[1] Sadat, A., Mustajab, P., Khan, I.A. (2006). Determining the adulteration of natural milk with synthetic milk using ac conductance measurement.
J. Food Eng., 77, 472–477. DOI:
10.1016/j.jfoodeng.2005.06.062[2] Kim, B.S., Lee, M., Kim, J.Y., Jung, J.Y., Koo, J. (2016). Development of a freshness-assessment model for a real-time online monitoring system of packaged commercial milk in distribution.
J. Food Sci. Technol., 68, 532–540. DOI:
10.1016/j.lwt.2015.12.049[3] Guo, W., Zhu, X., Liu, H., Yue, R., Wang, Sh. (2010). Effects of milk concentration and freshness on microwave dielectric properties.
J. Food Eng., 99, 344–350.
DOI: 10.1016/j.jfoodeng.2010.03.015[4] Sadat, A., Mustajab, P., Khan, I.A. (2006). Determining the adulteration of natural milk with synthetic milk using ac conductance measurement.
J. Food Eng., 77, 472–477.
DOI: 10.1016/j.jfoodeng.2005.06.062[5] Gennarelli, G., Romeo, S., Soldovieri, F., Scarfi, M.R. (2013). A microwave resonant sensor for concentration measurements of liquid solutions.
IEEE Sensors J., 13(4), 1857–1864. DOI:
10.1109/JSEN.2013.2244035[6] Moradkhani, A., Hasannejad, O., Baghelani, M. (2022). An artificial intelligence assisted distance variation robust microwave sensor for biofuel analysis applications.
IEEE Microw. Wireless Compon. Lett., 32(12). DOI:
10.1109/LMWC.2022.3177403[7] Mao, Y.J., Zhang, Y.J., Chen, Z.R., Tong, M.S. (2021). A noncontact microwave sensor based on cylindrical resonator for detecting concentration of liquid solutions.
IEEE Sensors J., 21(2). DOI:
10.1109/JSEN.2020.3016290[8] Wiltshire, B.D., Zarifi, M.H. (2019). 3-D printing microfluidic channels with embedded planar microwave resonators for RFID and liquid detection.
IEEE Microw. Wireless Compon. Lett., 29(1). DOI:
10.1109/LMWC.2018.2883715[9] Baghelani, M., Hosseini, N., Daneshmand, M. (2021). Non-contact real-time water and brine concentration monitoring in crude oil based on multi-variable analysis of microwave resonators.
Measurement, 177, 109286. DOI:
10.1016/j.measurement.2021.109286[10] Sattari, M.A., Hayati, M. (2024). Accurate and non-contact measurement of volume percentages of oil-water fluids using microstrip sensors independent of the volume of sample using artificial neural network.
Meas. Instrum., 97, 102621. DOI:
10.1016/j.flowmeasinst.2024.102621[11] Omer, A.E., Shaker, G., Safavi-Naeini, S. (2020). Portable radar-driven microwave sensor for intermittent glucose levels monitoring.
IEEE Sens. Lett., 4(5). DOI:
10.1109/LSENS.2020.2986208[12] Jain, M.C., Nadaraja, A.V., Vizcaino, B.M., Roberts, D.J., Zarifi, M.H. (2020). Differential microwave resonator sensor reveals glucose-dependent growth profile of
E. coli on solid agar.
IEEE Microw. Wireless Compon. Lett., 30(5). DOI:
10.1109/LMWC.2020.2980756[13] Abbasi, Z., Baghelani, M., Nosrati, M., Sanati-Nezhad, A., Daneshmand, M. (2019). Real-time non-contact integrated chipless RF sensor for disposable microfluidic applications.
IEEE J. Electromagn. RF Microwaves Med. Biol. DOI:
10.1109/JERM.2019.2954219
[14] Pozar, D. M. (2011). Microwave Engineering. 4th ed. John Wiley & Sons, Chapter 6.
[15] Balanis, C. A. (2016). Antenna Theory: Analysis and Design. 4th ed. John Wiley & Sons.
[16] Nelson, S. O. (2008). Dielectric properties of agricultural products and some applications. Res. Agric. Eng., 54(2), 104-112.