Comparative analysis of ohmic heating and conventional evaporation for milk concentration: Quality parameters, energy and exergy efficiencies, GHG emission, and sensory evaluation

Document Type : Research Article

Authors

1 Department of Biosystems Engineering; Faculty of Agriculture; University of Kurdistan, Sanandaj, Kurdistan, Iran

2 Department of Animal Science; Faculty of Agriculture; University of Kurdistan, Sanandaj, Kurdistan, Iran

Abstract

This study presents a comparative analysis of ohmic and conventional heating methods for milk concentration, evaluating processing kinetics, energy-exergy efficiency, quality parameters, environmental footprint, and sensory attributes. Ohmic heating outperformed conventional methods, slashing processing time by 1.88–4.33times and reducing energy consumption by 10.5–17 times, while achieving remarkably higher energy and exergy efficiencies (42.71–57.79% and 9.48–12.75%, respectively) compared to conventional heating (5.42% and 1.18%). Notably, ohmic heating led to less significant pH alterations (3.87 - 6.97%) compared to conventional heating method (10.37%). However, ohmic heating did induce more pronounced changes in color. Sensory attributes identified 20 V/cm as the best voltage gradient for balancing taste, texture, and aroma. Crucially, ohmic heating reduced CO2 emissions by 90.3–95.6% relative to conventional heating. These results establish ohmic heating as a sustainable, energy-efficient alternative for industrial milk concentration, addressing critical challenges in food processing sustainability without compromising product quality.

Graphical Abstract

Comparative analysis of ohmic heating and conventional evaporation for milk concentration: Quality parameters, energy and exergy efficiencies, GHG emission, and sensory evaluation

Highlights

  • Ohmic heating saved 10.5 to 17 times energy consumption.
  • Ohmic heating preserves pH better but causes more color changes.
  • 20 V/cm ideal for ohmic heating; higher voltages had negative effects on sensory evaluation.

Keywords

Main Subjects


[1] Aghbashlo, M., Mobli, H., Rafiee, S., & Madadlou, A. (2013). A review on exergy analysis of drying processes and systems. Renew. Sustain. Energy Rev., 22, 1–22. https://doi.org/10.1016/j.rser.2013.01.015
[2] Alkanan, Z.T., Altemimi, A.B., Al-Hilphy, A.R., Watson, D.G., & Pratap-Singh, A. (2021). Ohmic heating in the food industry: Developments in concepts and applications during 2013–2020. Appl. Sci., 11(6), p.2507. https://doi.org/10.3390/app11062507
[3] Aydin, C., Kurt, Ü., & Kaya, Y. (2020). Comparison of the effects of ohmic and conventional heating methods on some quality parameters of the hot-smoked fish Pâté. J. Aquat. Food Prod. Technol., 29(4), 407-416. https://doi.org/10.1080/10498850.2020.1741752
 [4] Aydogdu, T., O’Mahony, J.A., & McCarthy, N.A. (2023). pH, the fundamentals for milk and dairy processing: a review. Dairy, 4(3), 395-409. https://doi.org/10.3390/dairy4030026
[5] Balthazar, C.F., Cabral, L., Guimarães, J.T., Noronha, M.F., Cappato, L.P., Cruz, A.G., & Sant'Ana, A.S. (2022). Conventional and ohmic heating pasteurization of fresh and thawed sheep milk: Energy consumption and assessment of bacterial microbiota during refrigerated storage. Innov. Food Sci. Emerg. Technol., 76, p.102947. https://doi.org/10.1016/j.ifset.2022.102947
 [6] Bozkurt, H., & Icier, F. (2010). Exergetic performance analysis of ohmic cooking process. J. Food Eng., 100(4), 688-695. https://doi.org/10.1016/j.jfoodeng.2010.05.020
 [7] Calvo, L. M., & Domingo, R. (2017). CO2 emissions reduction and energy efficiency improvements in paper making drying process control by sensors. Sustainability, 9(4), 514. https://doi.org/10.3390/su9040514
[8] Cappato, L.P., Ferreira, M.V., Guimaraes, J.T., Portela, J.B., Costa, A.L., Freitas, M.Q., Cunha, R.L., Oliveira, C.A., Mercali, G.D., Marzack, L.D.F., & Cruz, A.G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends Food Sci. Technol., 62, 104-112. https://doi.org/10.1016/j.tifs.2017.01.010
 [9] Cevik, M. (2021). Electrical conductivity and performance evaluation of verjuice concentration process using ohmic heating method. J. Food Process Eng., 44(5), p.e13672. https://doi.org/10.1111/jfpe.13672
[10] Cokgezme, O.F., Sabanci, S., Cevik, M., Yildiz, H., & Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. J. Food Eng., 207, 1-9. https://doi.org/10.1016/j.jfoodeng.2017.03.015
[11] Corzo, O., Bracho, N., Vasquez, A., & Pereira, A. (2008). Energy and exergy analyses of thin layer drying of coroba slices. J. Food Eng., 86, 151–161. https://doi.org/10.1016/j.jfoodeng.2007.05.008
[12] Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S., Ranadheera, C.S., & Borges, F.O. (2018). Cold plasma processing of milk and dairy products. Trends Food Sci. Technol., 74, 56-68. https://doi.org/10.1016/j.tifs.2018.02.008
[13] Darvishi, H., Koushesh Saba, M., Behroozi-Khazaei, N., & Nourbakhsh, H. (2020a). Improving quality and quantity attributes of grape juice concentrate (molasses) using ohmic heating. J. Food Sci. Technol., 57, 1362-1370. https://doi.org/10.1007/s13197-019-04170-1
[14] Darvishi, H., Salami, P., Fadavi, A., & Saba, M.K. (2020b). Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating. Food Bioprod. Process., 123, 102-110. https://doi.org/10.1016/j.fbp.2020.06.003
[15] Darvishi, H., Hosainpour, A., Nargesi, F., & Fadavi, A. (2015). Exergy and energy analyses of liquid food in an ohmic heating process: a case study of tomato production. Innov. Food Sci. Emerg. Technol., 31, 73-82. https://doi.org/10.1016/j.ifset.2015.06.012
 [16] Darvishi, H., Khodaei, J., Behroozi-Khazaei, N., Salami, P., & Akhijahani, H. S. (2023). Greenhouse gas emission reduction potential, energy and exergy analysis of combined microwave-convective dryer. Energy, 285, 128772. https://doi.org/10.1016/j.energy.2023.128772
[17] De Marco, I., Miranda, S., Riemma, S., & Iannone, R. (2016). The impact of alternative apricot conservation techniques on global warming potential. Chem. Eng. Trans., 49, 325-330. https://doi.org/10.3303/CET1649055
 [18] Duguay, A.J., Ramaswamy, H.S., Zareifard, R., Zhu, S., Grabowski, S., & Marcotte, M. (2016). Ohmic heating behaviour of cabbage and daikon radish. Food Bioprocess Technol., 9, 430-440. https://doi.org/10.1007/s11947-015-1622-9
 [19] Fadavi, A., Yousefi, S., Darvishi, H., & Mirsaeedghazi, H. (2018). Comparative study of ohmic vacuum, ohmic, and conventional-vacuum heating methods on the quality of tomato concentrate. Innov. Food Sci. Emerg. Technol., 47, 225-230. https://doi.org/10.1016/j.ifset.2018.03.004
[20] Ghnimi, S., Nikkhah, A., Dewulf, J., & Van Haute, S. (2021). Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice. Sci Rep., 11(1), p.13041. https://doi.org/10.1038/s41598-021-92211-1
[21] Gulati, A. (2019). Effect of dairy cow diets on the composition and processing characteristics of milk. national university of Ireland, Maynooth (Ireland), ID:10858. https://mural.maynoothuniversity.ie/id/eprint/10858
[22] Hosainpour, A., Darvishi, H., Nargesi, F., & Fadavi, A. (2014). Ohmic pre-drying of tomato paste. Food Sci. Technol. Int., 20(3), 193-204.  https://doi.org/10.1177/1082013213480360
[23] Ito, R., Yamanaka-Zamoto, N., Watanabe, M., & Hamada-Sato, N. (2023). Environmental impact assessment of aseptically packaged chicken using ohmic heating. Food Sci. Technol Res., 29(6), 441-452. https://doi.org/10.3136/fstr.FSTR-D-22-00220
 [24] Lim, S.H., Chin, N.L., Sulaiman, A., Tay, C.H., & Wong, T.H. (2022). Sensory analysis for cow milk product development using high pressure processing (HPP) in the dairy industry. Foods, 11(9), p.1233. https://doi.org/10.3390/foods11091233
[25] Nazari, S., Shahhoseini, O., Sohrabi-Kashani, A., Davari, S., Paydar, R., & Delavar-Moghadam, Z. (2010). Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants. Energy, 35(7), 2992-2998. https://doi.org/10.1016/j.energy.2010.03.035
 [26] Norouzi, S., Fadavi, A., & Darvishi, H. (2021). The ohmic and conventional heating methods in concentration of sour cherry juice: Quality and engineering factors. J. Food Eng., 291, p.110242. https://doi.org/10.1016/j.jfoodeng.2020.110242
[27] Paini, A., Romei, S., Stefanini, R., & Vignali, G. (2023). Comparative life cycle assessment of ohmic and conventional heating for fruit and vegetable products: The role of the mix of energy sources. J. Food Eng., 350, p.111489. https://doi.org/10.1016/j.jfoodeng.2023.111489
 [28] Panirani, P.N., Darvishi, H., Hosainpour, A., & Behroozi-Khazaei, N. (2023). Comparative study of different bread baking methods: Combined ohmic–infrared, ohmic–conventional, infrared–conventional, infrared, and conventional heating. Innov. Food Sci. Emerg. Technol., 86, p.103349. https://doi.org/10.1016/j.ifset.2023.103349
[29] Parmar, P., Singh, A. K., Meena, G. S., Borad, S., & Raju, P. N. (2018). Application of ohmic heating for concentration of milk. J. Food Sci. Technol., 55(12), 4956-4963. https://doi.org/10.1007/s13197-018-3431-4
[30] Rocha, R.S., Silva, R., Guimarães, J.T., Balthazar, C.F., Pimentel, T.C., Neto, R.P., Tavares, M.I.B., Esmerino, E.A., Freitas, M.Q., Cappato, L.P., & Calvacanti, R.N. (2020). Possibilities for using ohmic heating in Minas Frescal cheese production. Food Res. Int., 131, p.109027. https://doi.org/10.1016/j.foodres.2020.109027
[31] Sun, Y., Liu, Y., Zhou, W., Shao, L., Wang, H., Zhao, Y., Zou, B., Li, X., & Dai, R. 2024. Effects of ohmic heating with different voltages on the quality and microbial diversity of cow milk during thermal treatment and subsequent cold storage. Int. J. Food Microbiol., 410, p.110483. https://doi.org/10.1016/j.ijfoodmicro.2023.110483
[32] Sürme, S, A., & Sabancı, S. (2021). The usage of Ohmic heating in milk evaporation and evaluation of electrical conductivity and performance analysis. J. Food Process. Preserv., 45(9), p.e15522. https://doi.org/10.1111/jfpp.15522
[33] Torshizi, M.V., Azadbakht, M., & Kashaninejad, M. (2020). Application of response surface method to energy and exergy analyses of the ohmic heating dryer for sour orange juice. Fuel, 278, p.118261. https://doi.org/10.1016/j.fuel.2020.118261
 [34] Varghese, K.S., Pandey, M.C., Radhakrishna, K., & Bawa, A.S. (2014). Technology, applications and modelling of ohmic heating: a review. J. Food Sci. Technol., 51, 2304-2317. https://doi.org/10.1007/s13197-012-0710-3
Volume 12, Issue 3
May 2025
Pages 305-319
  • Receive Date: 28 June 2025
  • Revise Date: 19 July 2025
  • Accept Date: 20 July 2025
  • First Publish Date: 20 July 2025
  • Publish Date: 21 April 2025