This study investigates the ultrasound-assisted extraction of bioactive compounds, particularly tannins, from potato peel, a widely available agricultural by-product. The optimization of extraction parameters, including solvent type (water, methanol, ethanol, acetone) and extraction time (10 and 15 minutes), was carried out to maximize the yield of phenolic compounds and tannins. The results showed that water was the most effective solvent for both phenolic and tannin extraction, with the highest yields obtained at 15 minutes. Specifically, 219.5 ± 75.4 mg of phenolic compounds and 142.83 ± 9.50 mg of tannins per 100g of dry potato peel were recovered using water. The optimization of these extraction parameters was confirmed through statistical analysis, including ANOVA, which revealed significant effects of both solvent type and extraction time on the extraction efficiency (P<0.01). The ultrasound-assisted extraction method proved to be an efficient, sustainable, and cost-effective technique, demonstrating its potential for industrial-scale applications, particularly in the food, pharmaceutical, and cosmetic industries. This study offers a promising approach to valorize potato peel waste, contributing to both waste reduction and the production of valuable bioactive compounds.
Graphical Abstract
Highlights
Ultrasound-assisted extraction of bioactive compounds from potato peel was investigated and optimized.
Solvent type and extraction time were identified as key factors affecting phenolic and tannin yields.
Water was found to be the most effective solvent for extracting phenolic compounds and tannins.
The highest tannin yield was obtained with water at 15 minutes of extraction.
Ultrasound-assisted extraction was introduced as an efficient, cost-effective, and eco-friendly method for industrial applications.
Ezekiel, R., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato — A review. Journal of Food Chemistry, 50(2), 487-496.
Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science & Technology, 103, 118-129. https://doi.org/10.1016/j.tifs.2020.07.01
(2022). FAOSTAT Database. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/faostat/en/
Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. FAO.
Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. FAO.
Chauhan, A., Islam, F., Imran, A., Ikram, A., Zahoor, T., Khurshid, S., & Shah, M. A. (2023). A review on waste valorization, biotechnological utilization, and management of potato. Food Science & Nutrition, 11(10), 5773-5785. https://doi.org/10.1002/fsn3.3546
Khanal, S., Karimi, K., Majumdar, S., Kumar, V., Verma, R., Bhatia, S. K., . . . Kumar, D. (2024). Sustainable utilization and valorization of potato waste: State of the art, challenges, and perspectives. Biomass Conversion and Biorefinery, 14(19), 23335-23360. https://doi.org/10.1007/s13399-023-04521-1
Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science & Technology, 103, 118-129. https://doi.org/10.1016/j.tifs.2020.07.01
Rodríguez-Martínez, B., Gullón, B., & Yáñez, R. (2021). Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants (Basel), 10(10). https://doi.org/10.3390/antiox10101630
Ijaz, N., Bashir, S., Ikram, A., Zafar, A., Ul Ain, H. B., Ambreen, S., . . . Madilo, F. K. (2024). Valorization of potato peel: A sustainable eco-friendly approach. CyTA - Journal of Food, 22(1), 2306951. https://doi.org/10.1080/19476337.2024.2306951
Mortazavi, F., Khodabakhshian, R., & Moeenfard, M. (2024). Comparing and examining the tannin content of potato peel with four different solvents. Journal of Agricultural Machinery, 14(3), 271-282. https://doi.org/10.22067/jam.2023.80710.1147
Pizzi, A. (2021). Tannins medical/pharmacological and related applications: A critical review. Sustainable Chemistry and Pharmacy, 22, 100481. https://doi.org/10.1016/j.scp.2021.100481
Cuong, D. X., Hoan, N. X., Dong, D. H., Thuy, L. T. M., Thanh, N. V., Ha, H. T., Tuyen, D. T. T., & Chinh, D. X. (2020). Tannins: Structural properties, biological properties, and current knowledge.
Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., & Napolitano, A. (2020). Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Front Nutrition, 7, 60. https://doi.org/10.3389/fnut.2020.00060
Sarangi, P. K., Vivekanand, V., Mohanakrishna, G., Pattnaik, B., Muddapur, U. M., & Aminabhavi, T. M. (2023). Production of bioactive phenolic compounds from agricultural by-products towards bioeconomic perspectives. Journal of Cleaner Production, 414, 137460. https://doi.org/10.1016/j.jclepro.2023.137460
Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3). https://doi.org/10.3390/molecules25030614
Prado-Acebo, I., Cubero-Cardoso, J., Lu-Chau, T. A., & Eibes, G. (2024). Integral multi-valorization of agro-industrial wastes: A review. Waste Management, 183, 42-52. https://doi.org/10.1016/j.wasman.2024.05.001
Sharma, K., Kumar, V., Kaur, J., Tanwar, B., Goyal, A., Sharma, R., . . . Kumar, A. (2021). Health effects, sources, utilization, and safety of tannins: A critical review. Toxin Reviews, 40(4), 432-444. https://doi.org/10.1080/15569543.2019.1662813
Jing, W., Xiaolan, C., Yu, C., Feng, Q., & Haifeng, Y. (2022). Pharmacological effects and mechanisms of tannic acid. Biomedicine & Pharmacotherapy, 154, 113561. https://doi.org/10.1016/j.biopha.2022.113561
Shirmohammadli, Y., Efhamisisi, D., & Pizzi, A. (2018). Tannins as a sustainable raw material for green chemistry: A review. Industrial Crops and Products, 126, 316-332. https://doi.org/10.1016/j.indcrop.2018.10.034
Dang Xuan, C., Nguyen Xuan, H., Dinh Huu, D., Le Thi Minh, T., Nguyen Van, T., Hoang Thai, H., . . . Dang Xuan, C. (2019). Tannins: Extraction from plants. In A. Alfredo (Ed.), Tannins (pp. Ch. 4). Rijeka: IntechOpen
De Hoyos-Martínez, P. L., Merle, J., Labidi, J., & Charrier – El Bouhtoury, F. (2019). Tannins extraction: A key point for their valorization and cleaner production. Journal of Cleaner Production, 206, 1138-1155. https://doi.org/10.1016/j.jclepro.2018.09.243
Aimone, C., Grillo, G., Boffa, L., Giovando, S., & Cravotto, G. (2023). Tannin extraction from chestnut wood waste: From lab scale to semi-industrial plant. Applied Sciences, 13(4), 2494. https://doi.org/10.3390/app13042494
Pizzi, A., Laborie, M.-P., & Candan, Z. (2024). A review on sources, extractions and analysis methods of a sustainable biomaterial: Tannins. Journal of Renewable Materials, 12(3), 397-425. https://doi.org/10.32604/jrm.2023.046074
Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3). https://doi.org/10.3390/molecules25030614
Das, A. K., Islam, M. N., Faruk, M. O., Ashaduzzaman, M., & Dungani, R. (2020). Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58-70. https://doi.org/10.1016/j.sajb.2020.08.008
Duarte, H., Gomes, V., Aliaño-González, M. J., Faleiro, L., Romano, A., & Medronho, B. (2022). Ultrasound-assisted extraction of polyphenols from maritime pine residues with deep eutectic solvents. Foods, 11(23), 3754. https://doi.org/10.3390/foods11233754
Liu, Y., Zhe, W., Zhang, R., Peng, Z., Wang, Y., Gao, H., . . . Xiao, J. (2022). Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. using deep eutectic solvent: Optimization, identification, and comparison with traditional methods. Ultrasonics Sonochemistry, 86, 106005. https://doi.org/10.1016/j.ultsonch.2022.106005
Watrelot, A. A., & Bouska, L. (2022). Optimization of the ultrasound-assisted extraction of polyphenols from Aronia and grapes. Food Chemistry, 386, 132703. https://doi.org/10.1016/j.foodchem.2022.132703
De Souza Ribeiro, M. M., Viganó, J., de Novais, N. S., de Souza Mesquita, L. M., Kamikawachi, R. C., Vilegas, W., . . . Veggi, P. C. (2023). The effect of ultrasound on improving the extraction of tannins from the Stryphnodendron adstringens bark. Sustainable Chemistry and Pharmacy, 33, 101044. https://doi.org/10.1016/j.scp.2023.101044
Hu, Y., Qian, W., Fan, S., Yang, Y., Liao, H., Zhuang, G., & Gao, S. (2024). Ultrasonic-assisted extraction of phenolic compounds from Lonicera similis flowers at three harvest periods: Comparison of composition, characterization, and antioxidant activity. Molecules, 29(14). https://doi.org/10.3390/molecules29143280
Quaratesi, I., Calinescu, I., Lavric, V., Ferrara, V., Badea, E., Chipurici, P., Dumbravă, E. -G., Constantinescu, R. -R., Ignat, N. D., & Popa, I. (2024). Loop-ultrasound-assisted extraction: An efficient approach for the recovery of bioactive compounds from oak bark. Agronomy, 14(7), 1452. https://doi.org/10.3390/agronomy14071452
Kumari, B., Tiwari, B. K., Hossain, M. B., Rai, D. K., & Brunton, N. P. (2017). Ultrasound-assisted extraction of polyphenols from potato peels: Profiling and kinetic modelling. International Journal of Food Science & Technology, 52(6), 1432-1439. https://doi.org/10.1111/ijfs.13404
Riciputi, Y., Diaz-de-Cerio, E., Akyol, H., Capanoglu, E., Cerretani, L., Caboni, M. F., & Verardo, V. (2018). Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chemistry, 269, 258-263. https://doi.org/10.1016/j.foodchem.2018.06.154
Prakash Maran, J., Manikandan, S., Vigna Nivetha, C., & Dinesh, R. (2017). Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry, 10, S1145-S1157. https://doi.org/10.1016/j.arabjc.2013.02.007
Montero-Calderon, A., Cortes, C., Zulueta, A., Frigola, A., & Esteve, M. J. (2019). Green solvents and ultrasound-assisted extraction of bioactive orange (Citrus sinensis) peel compounds. Scientific Reports, 9(1), 16120. https://doi.org/10.1038/s41598-019-52717-1
Makkar, H. P. S. (2003). Measurement of total phenolics and tannins using Folin-Ciocalteu method. In H. P. S. Makkar (Ed.), Quantification of tannins in tree and shrub foliage: A laboratory manual (pp. 49-51). Dordrecht: Springer Netherlands.
Pandey, V., Singh, V., & Shukla, K. (2017). Quantitative estimation of secondary metabolites. International Journal of Scientific Engineering and Research, 5, 13-15. https://doi.org/10.70729/IJSER151590
Ezekiel, R., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato — A review. Journal of Food Chemistry, 50(2), 487-496.
Wang, C., Shi, L., Fan, L., Ding, Y., Zhao, S., Liu, Y., & Ma, C. (2013). Optimization of extraction and enrichment of phenolics from pomegranate (Punica granatum L.) leaves. Journal of Industrial Crops and Products, 42, 587-594.
Maqsood, S., Benjakul, S., & Shahidi, F. (2013). Emerging role of phenolic compounds as natural food additives in fish and fish products. Critical Reviews in Food Science and Nutrition, 53, 162-179. https://doi.org/10.1080/10408398.2010.518775
Singh, J., Rasane, P., Kaur, R., Kaur, H., Garg, R., Kaur, S., . . . Mlcek, J. (2023). Valorization of grape (Vitis vinifera) leaves for bioactive compounds: Novel green extraction technologies and food-pharma applications. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1290619
Ersan, S., Ustundag, O. G., Carle, R., & Schweiggert, R. M. (2018). Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Journal of Food Chemistry, 253, 46-54.
Brouwer, P., Nierop, K. G. J., Huijgen, W. J. J., & Schluepmann, H. (2019). Aquatic weeds as novel protein sources: Alkaline extraction of tannin-rich Azolla. Biotechnology Reports, 24, e00368. https://doi.org/10.1016/j.btre.2019.e00368
Sirisangsawang, R., & Phetyim, N. (2023). Optimization of tannin extraction from coconut coir through response surface methodology. Heliyon, 9(2), e13377. https://doi.org/10.1016/j.heliyon.2023.e13377
Schieber, A., & Saldana, A. M. (2009). Potato peels: A source of nutritionally and pharmacologically interesting compounds—A review. Global Science Books, Food, 3(2), 23-29.
Jansen, G., & Flamme, W. (2006). Coloured potatoes (Solanum tuberosum L.) – Anthocyanin content and tuber quality. Genetic Resources and Crop Evolution, 53(7), 1321-1331. https://doi.org/10.1007/s10722-005-3880-2
Saad, H., Charrier-El Bouhtoury, F., Pizzi, A., Rode, K., Charrier, B., & Ayed, N. (2012). Characterization of pomegranate peel tannin extractives. Industrial Crops and Products, 40, 239-246. https://doi.org/10.1016/j.indcrop.2012.02.038
Mortazavi, F. and Khodabakhshian, R. (2025). Ultrasound-Assisted Extraction of Bioactive Compounds from Potato Peel: A Sustainable Approach for Tannin Recovery. Innovative Food Technologies, 12(3), 251-265. doi: 10.22104/ift.2025.7578.2211
MLA
Mortazavi, F. , and Khodabakhshian, R. . "Ultrasound-Assisted Extraction of Bioactive Compounds from Potato Peel: A Sustainable Approach for Tannin Recovery", Innovative Food Technologies, 12, 3, 2025, 251-265. doi: 10.22104/ift.2025.7578.2211
HARVARD
Mortazavi, F., Khodabakhshian, R. (2025). 'Ultrasound-Assisted Extraction of Bioactive Compounds from Potato Peel: A Sustainable Approach for Tannin Recovery', Innovative Food Technologies, 12(3), pp. 251-265. doi: 10.22104/ift.2025.7578.2211
CHICAGO
F. Mortazavi and R. Khodabakhshian, "Ultrasound-Assisted Extraction of Bioactive Compounds from Potato Peel: A Sustainable Approach for Tannin Recovery," Innovative Food Technologies, 12 3 (2025): 251-265, doi: 10.22104/ift.2025.7578.2211
VANCOUVER
Mortazavi, F., Khodabakhshian, R. Ultrasound-Assisted Extraction of Bioactive Compounds from Potato Peel: A Sustainable Approach for Tannin Recovery. Innovative Food Technologies, 2025; 12(3): 251-265. doi: 10.22104/ift.2025.7578.2211