[1] Marsh, K., & Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. J. Food Sci. 72(3), 39-55.
[2] Clodoveo, M. L., Muraglia, M., Fino, V., Curci, F., Fracchiolla, G., & Corbo, F. F. R. (2021). Overview on innovative packaging methods aimed to increase the shelf-life of cook-chill foods. Foods, 10(9), 2086.
[3] Yan, M. R., Hsieh, S., & Ricacho, N. (2022). Innovative food packaging, food quality and safety, and consumer perspectives. Processes, 10(4), 747.
[5] Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2021). trans-Cinnamaldehyde-doped quadripartite biopolymeric films: Rheological behavior of film-forming solutions and biofunctional performance of films. Food Hydrocoll. 112, 106339.
[6] Wen, P., Zhu, D. H., Wu, H., Zong, M. H., Jing, Y. R., & Han, S. Y. (2016). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 59, 366-376.
[7] Rabie, M., Sefidkon, F., & Jalili, A. (2002). The essential oil composition of Artemisia annua in five locations of Gilan province. Pajouhesh-va-Sazandegi. In Natural Resources, 55, 20-23.
[8] Isacchi, B., Bergonzi, M. C., Grazioso, M., Righeschi, C., Pietretti, A., Severini, C., & Bilia, A. R. (2012). Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur. J. Pharm. Biopharm. 80(3), 528-534.
[9] Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem. 136(3-4), 1490-1495.
[10] Rhim, J. W., Hong, S. I., Park, H. M. & Ng, P. K. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem. 54(16), 5814-5822.
[11] Imran, M., El-Fahmy, S., Revol-Junelles, A. M., & Desobry, S. (2010). Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr. Polym. 81(2), 219-225.
[12] Abbasi, S. (2017). Challenges towards characterization and applications of a novel hydrocolloid: Persian gum. Curr. Opin. Colloid Interface Sci. 28, 37-45.
[13] Saha, A., Tyagi, S., Gupta, R. K., & Tyagi, Y. K. (2017). Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol. 37(8), 959-973.
[14] Kadkhodaee, R., & Mahfouzi, M. (2022). Chemistry and Food Applications of Persian Gum. In Gums, Resins and Latexes of Plant Origin: Chemistry, Biological Activities and Uses (pp. 1-26). Cham: Springer International Publishing.
[15] Najafian, N., Aarabi, A., & Nezamzadeh-Ejhieh, A. (2022). Evaluation of physicomechanical properties of gluten-based film incorporated with Persian gum and Guar gum. Int. J. Biol. Macromol. 223, 1257-1267.
[16] Ruan, C., Zhang, Y., Wang, J., Sun, Y., Gao, X., Xiong, G., & Liang, J. (2019). Preparation and antioxidant activity of sodium alginate and carboxymethyl cellulose edible films with epigallocatechin gallate. Int. J. Biol. Macromol. 134, 1038-1044.
[17] ASTM. (2005). Standard test method for water vapor transmission of materials (E96-05). In Annual Book of ASTM Standards. American Society for Testing Materials, Philadelphia, PA.
[18] ASTM (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards. Designation D882-02. Philadelphia: American Society for Testing Materials.
[19] Javidi, Z., Hosseini, S.F. and Rezaei, M., 2016. Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT, 72, 251-260.
[20] Zhou, J. J., Wang, S. Y., & Gunasekaran, S. (2009). Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci. 74(7), 50-56.
[21] Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll. 28(1), 189-199.
[22] Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 26(1), 9-16.
[23] Cao, T. L., & Song, K. B. (2019). Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll. 97, 105198.
[24] Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. J. Food Eng. 110(2), 232-239.
[25] Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem. 134(3), 1571-1579.
[26] Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind Crops Prod., 67, 403-413.
[27] Fernandes, G. D. J. C., Campelo, P. H., de Abreu Figueiredo, J., Barbosa de Souza, H. J., Peixoto Joele, M. R. S., Yoshida, M. I., & Henriques Lourenço, L. D. F. (2022). Effect of polyvinyl alcohol and carboxymethylcellulose on the technological properties of fish gelatin films. Sci. Rep. 12(1), 10497.
[28] Gómez-Estaca, J., De Lacey, A. L., López-Caballero, M. E., Gómez-Guillén, M. D. C., & Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 27(7), 889-896.
[29] Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M. L., & Marques, A. (2013). Hake proteins edible films incorporated with essential oils: physical, mechanical, antioxidant and antibacterial properties. Food Hydrocoll. 30(1), 224-231.
[30] Kavoosi, G., Dadfar, S. M. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 78, 244-250.
[31] Walid, Y., Malgorzata, N., Katarzyna, R., Piotr, B., Ewa, O. L., Izabela, B., ... & Moufida, S. T. (2022). Effect of rosemary essential oil and ethanol extract on physicochemical and antibacterial properties of optimized gelatin–chitosan film using mixture design. J. Food Process. Preserv. 46(1), e16059.
[32] Narasagoudr, S. S., Hegde, V. G., Vanjeri, V. N., Chougale, R. B., & Masti, S. P. (2020). Ethyl vanillin incorporated chitosan/poly (vinyl alcohol) active films for food packaging applications. Carbohydr. Polym. 236, 116049.
[33] Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int. J. Biol. Macromol. 99, 746-753.
[34] Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym. 84(1), 477-483.
[35] He, B., Wang, W., Song, Y., Ou, Y., & Zhu, J. (2020). Structural and physical properties of carboxymethyl cellulose/gelatin films functionalized with antioxidant of bamboo leaves. Int. J. Biol. Macromol., 164, 1649-1656.
[36] Sanchez-Gonzalez, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocoll. 23(8), 2102-2109.
[37] Kavoosi, G., Rahmatollahi, A., Dadfar, S. M. M., & Purfard, A. M. (2014). Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT, 57(2), 556-561.
[38] Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J. Food Eng. 109(3), 513-519.
[39] Ahmad, H. N., Yong, Y., Wang, S., Munawar, N., & Zhu, J. (2024). Development of novel carboxymethyl cellulose/gelatin-based edible films with pomegranate peel extract as antibacterial/antioxidant agents for beef preservation. Food Chem. 443, 138511.
[40] Haghighi, H., Biard, S., Bigi, F., De Leo, R., Bedin, E., Pfeifer, F., ... & Pulvirenti, A. (2019). Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocoll. 95, 33-42.
[41] Arora, A., & Padua, G. W. (2010). Nanocomposites in food packaging. J. Food Sci. 75(1), 43-49.
[42] Nguyen, Q. D., Tran, T. T. V., Nguyen, N. N., Nguyen, T. P., & Lien, T. N. (2023). Preparation of gelatin/carboxymethyl cellulose/guar gum edible films enriched with methanolic extracts from shallot wastes and its application in the microbiological control of raw beef. Food Packag. Shelf Life. 37, 101091.
[43] Pan, R., Xuan, W., Chen, J., Dong, S., Jin, H., Wang, X., ... & Luo, J. (2018). Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy, 45, 193-202.
[44] Ma, Q., Du, L., Yang, Y., & Wang, L. (2017). Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocoll. 63, 677-684.
[45] Sun, C., Wang, Y. S., Luan, Q. Y., & Chen, H. H. (2024). Preparation and properties of edible active films of gelatin/carboxymethyl cellulose loaded with resveratrol. Int. J. Biol. Macromol. 283, 137897.
[46] Pérez-Córdoba, L. J., Norton, I. T., Batchelor, H. K., Gkatzionis, K., Spyropoulos, F., & Sobral, P. J. (2018). Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocoll. 79, 544-559.
[47] Kan, J., Liu, J., Yong, H., Liu, Y., Qin, Y., & Liu, J. (2019). Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int. J. Biol. Macromol. 140, 384-392.
[48] Kanimozhi, K., Basha, S. K., & Kumari, V. S. (2016). Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater. Sci. Eng. C. 61, 484-491.
[49] Tongnuanchan, P., Benjakul, S., Prodpran, T., Pisuchpen, S., & Osako, K. (2016). Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocoll. 56, 93-107.
[50] Kang, J. H., & Song, K. B. (2019). Characterization of Job's tears (Coix lachryma-jobi L.) starch films incorporated with clove bud essential oil and their antioxidant effects on pork belly during storage. LWT, 111, 711-718.
[51] Ibrahim, M. M., Koschella, A., Kadry, G., & Heinze, T. (2013). Evaluation of cellulose and carboxymethyl cellulose/poly (vinyl alcohol) membranes. Carbohydr. Polym. 95(1), 414-420.
[52] Martucci, J. F., & Ruseckaite, R. A. (2015). Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polym. Degrad. Stab. 116, 36-44.
[53] Balaguer, M. P., Gómez‐Estaca, J., Gavara, R., & Hernandez‐Munoz, P. (2011). Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J. Agric. Food Chem. 59, 6689-6695.
[54] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94(3), 223-253.
[55] Ćavar, S., Maksimović, M., Vidic, D., & Parić, A. (2012). Chemical composition and antioxidant and antimicrobial activity of essential oil of Artemisia annua L. from Bosnia. Ind. Crop. Prod. 37(1), 479-485.
[56] Hashemi, S. M. B., & Khodaei, D. (2021). Basil seed gum edible films incorporated with Artemisia sieberi and Achillea santolina essential oils: Physical, antibacterial, and antioxidant properties. J. Food Process. Preserv. 45(7), e15645.