Development and Characterization of a Functional Smart PVA/NC/PCL Nano-biocomposite Using E. Coli Phage: Insights into Physicochemical Properties and Antimicrobial Activity

Document Type : Research Article

Authors

1 Department of Food Industry Science and Technolog, Faculty of Agriculture, University of Tabriz , Iran

2 Dept. of Food Science and Technology, Faculty of Agriculture, University of Tabriz

3 Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition& Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

4 Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran

Abstract

Food packaging plays a critical role in preserving the freshness and quality of foods while preventing microbial spoilage. Advances in this field have led to the development of intelligent and active packaging systems incorporating nanotechnology. Among these, electrospinning has gained attention for producing nanofibrous materials with high surface-to-volume ratios, enabling the efficient loading of active agents.

In response to the growing concern over antibiotic-resistant bacteria, this study investigates the use of bacteriophages as an alternative antimicrobial agent. Lytic bacteriophages targeting Escherichia coli were isolated from Caspian seawater and immobilized onto electrospun nanofibers composed of polyvinyl alcohol (PVA), polycaprolactone (PCL), and bacterial nanocellulose (BNC). SEM confirmed successful phage immobilization, while TEM revealed their classification within the Siphoviridae and Podoviridae families.

The addition of PCL to PVA enhanced the fibers' mechanical strength, reduced defects, and improved water resistance. Incorporating BNC further strengthened the nanofiber structure and enhanced its matrix properties. Antimicrobial testing using the disc diffusion method revealed an inhibition halo of 13 mm, exceeding that of the antibiotic ampicillin. Notably, the functionalized nanofibers retained antimicrobial efficacy for up to one month, with stable phage viability at 24°C, 4°C, and -20°C.

These findings demonstrate the potential of electrospun nanofibers functionalized with bacteriophages as a sustainable solution for combating bacterial contamination in food packaging, contributing to enhanced food safety and extended shelf life.

Graphical Abstract

Development and Characterization of a Functional Smart PVA/NC/PCL Nano-biocomposite Using E. Coli Phage: Insights into Physicochemical Properties and Antimicrobial Activity

Highlights

  • Using Phages emerges as a promising alternative for treating antibiotic-resistant infections.
  • Specific Escherichia coli phages were successfully isolated from Caspian seawater.
  • Electrospun nanofibers were prepared using the electrospinning method, incorporating these isolated phages.
  • In vitro studies demonstrated that the electrospun nanofibers containing phages significantly reduced Escherichia coli

Keywords

Main Subjects


  1. Abedon, S. T. (2023). Bacteriophage Adsorption: Likelihood of Virion Encounter with Bacteria and Other Factors Affecting Rates [Review]. Antibiotics, 12(4), Article 723. https://doi.org/10.3390/antibiotics12040723
  2. Ahn, K., Park, K., Sadeghi, K., & Seo, J. (2024). New Surface Modification of Hydrophilic Polyvinyl Alcohol via Predrying and Electrospinning of Hydrophobic Polycaprolactone Nanofibers [Article]. Foods, 13(9), Article 1385. https://doi.org/10.3390/foods13091385
  3. Anany, H., Chen, W., Pelton, R., & Griffiths, M. W. (2011). Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes [Article]. Applied and environmental microbiology, 77(18), 6379-6387. https://doi.org/10.1128/AEM.05493-11
  4. Azari, A., Golchin, A., Maymand, M. M., Mansouri, F., & Ardeshirylajimi, A. (2022). Electrospun Polycaprolactone Nanofibers: Current Research and Applications in Biomedical Application [Review]. Advanced Pharmaceutical Bulletin, 12(4), 658-672. https://doi.org/10.34172/apb.2022.070
  5. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology advances, 28(3), 325-347.
  6. Chen, Z., Wei, B., Mo, X., Lim, C. T., Ramakrishna, S., & Cui, F. (2009). Mechanical properties of electrospun collagen-chitosan complex single fibers and membrane [Article]. Materials Science and Engineering C, 29(8), 2428-2435. https://doi.org/10.1016/j.msec.2009.07.006
  7. Cho, M.-J., & Park, B.-D. (2011). Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. Journal of Industrial and Engineering Chemistry, 17(1), 36-40.
  8. Dallal, M. M. S., Imeni, S. M., Nikkhahi, F., Rajabi, Z., & Salas, S. P. (2016). Isolation of E. Coli bacteriophage from raw sewage and comparing its antibacterial effect with ceftriaxone antibiotic. Int J Adv Biotechnol Res, 7(3), 385-391.
  9. Doyle, M. P., & Schoeni, J. L. (1987). Isolation of Escherichia coli O157:H7 from retail fresh meats and poultry [Article]. Applied and environmental microbiology, 53(10), 2394-2396. https://doi.org/10.1128/aem.53.10.2394-2396.1987
  10. Dufresne, A. (2013). Nanocellulose: A new ageless bionanomaterial [Review]. Materials Today, 16(6), 220-227. https://doi.org/10.1016/j.mattod.2013.06.004
  11. Ejara, T. M., Balakrishnan, S., & Kim, J. C. (2021). Nanocomposites of PVA/cellulose nanocrystals: Comparative and stretch drawn properties [Article]. SPE Polymers, 2(4), 288-296. https://doi.org/10.1002/pls2.10057
  12. Ghosh, C., Sarkar, P., Issa, R., & Haldar, J. (2019). Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance [Review]. Trends in Microbiology, 27(4), 323-338. https://doi.org/10.1016/j.tim.2018.12.010
  13. Goddard, J. M., & Hotchkiss, J. H. (2007). Polymer surface modification for the attachment of bioactive compounds [Review]. Progress in Polymer Science (Oxford), 32(7), 698-725. https://doi.org/10.1016/j.progpolymsci.2007.04.002
  14. Hagens, S., & Loessner, M. J. (2010). Bacteriophage for biocontrol of foodborne pathogens: Calculations and considerations [Review]. Current Pharmaceutical Biotechnology, 11(1), 58-68. https://doi.org/10.2174/138920110790725429
  15. Huang, D., Hu, Z.-D., Ding, Y., Zhen, Z.-C., Lu, B., Ji, J.-H., & Wang, G.-X. (2019). Seawater degradable PVA/PCL blends with water-soluble polyvinyl alcohol as degradation accelerator. Polymer Degradation and Stability, 163, 195-205.
  16. Jamróz, E., Kulawik, P., & Kopel, P. (2019). The effect of nanofillers on the functional properties of biopolymer-based films: A review [Review]. Polymers, 11(4), Article 675. https://doi.org/10.3390/polym11040675
  17. Ji, X., Guo, J., Guan, F., Liu, Y., Yang, Q., Zhang, X., & Xu, Y. (2021). Preparation of electrospun polyvinyl alcohol/nanocellulose composite film and evaluation of its biomedical performance [Article]. Gels, 7(4), Article 223. https://doi.org/10.3390/gels7040223
  18. Jiang, Z., Nguyen, B. T. D., Seo, J., Hong, C., Kim, D., Ryu, S., Lee, S., Lee, G., Cho, Y. H., Kim, J. F., & Lee, K. (2023). Superhydrophobic polydimethylsiloxane dip-coated polycaprolactone electrospun membrane for extracorporeal membrane oxygenation [Article]. Journal of Membrane Science, 679, Article 121715. https://doi.org/10.1016/j.memsci.2023.121715
  19. Khoo, R., Ismail, H., & Chow, W. (2016). Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chemistry, 19, 788-794.
  20. Kielholz, T., Rohde, F., Jung, N., & Windbergs, M. (2023). Bacteriophage-loaded functional nanofibers for treatment of P. aeruginosa and S. aureus wound infections [Article]. Scientific Reports, 13(1), Article 8330. https://doi.org/10.1038/s41598-023-35364-5
  21. Korehei, R., & Kadla, J. (2013). Incorporation of T4 bacteriophage in electrospun fibres [Article]. Journal of Applied Microbiology, 114(5), 1425-1434. https://doi.org/10.1111/jam.12158
  22. Li, Y., Han, C., Yu, Y., & Xiao, L. (2020). Effect of loadings of nanocellulose on the significantly improved crystallization and mechanical properties of biodegradable poly (ε-caprolactone). International journal of biological macromolecules, 147, 34-45.
  23. Liu, B., Wu, S., Song, Q., Zhang, X., & Xie, L. (2006). Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields [Article]. Current Microbiology, 53(2), 163-166. https://doi.org/10.1007/s00284-005-0509-9
  24. Mahoutforoush, A., Asadollahi, L., Hamishehkar, H., Abbaspour-Ravasjani, S., Solouk, A., & Nazarpak, M. H. (2023). Targeted Delivery of Pennyroyal via Methotrexate Functionalized PEGylated Nanostructured Lipid Carriers into Breast Cancer Cells; A Multiple Pathways Apoptosis Activator [Article]. Advanced Pharmaceutical Bulletin, 13(4), 747-760. https://doi.org/10.34172/apb.2023.077
  25. Meng, L., Ding, S., Li, W., Liu, D., & Liu, E. (2024). Preparation and property analysis of cellulose reinforced carbon nanocomposite hydrogels [Article]. New Journal of Chemistry, 48(27), 12138-12145. https://doi.org/10.1039/d4nj01692k
  26. Meng, L., Li, J., Fan, X., Wang, Y., Xiao, Z., Wang, H., Liang, D., & Xie, Y. (2023). Improved mechanical and antibacterial properties of polyvinyl alcohol composite films using quaternized cellulose nanocrystals as nanofillers [Article]. Composites Science and Technology, 232, Article 109885. https://doi.org/10.1016/j.compscitech.2022.109885
  27. Meshkani, M., Mortazavi, A., & Pourfallah, Z. (2013). Antimicrobial and physical properties of a chickpea protein isolate-based film containing essential oil of thyme using response surface methodology. Iranian Journal of Nutrition Sciences & Food Technology, 8(1), 93-104.
  28. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites [Article]. Chemical Society Reviews, 40(7), 3941-3994. https://doi.org/10.1039/c0cs00108b
  29. Nazari, M., Majdi, H., Milani, M., Abbaspour-Ravasjani, S., Hamishehkar, H., & Lim, L. T. (2019). Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging [Article]. Food Packaging and Shelf Life, 21, Article 100349. https://doi.org/10.1016/j.fpsl.2019.100349
  30. Nogueira, F., Karumidze, N., Kusradze, I., Goderdzishvili, M., Teixeira, P., & Gouveia, I. C. (2017). Immobilization of bacteriophage in wound-dressing nanostructure [Article]. Nanomedicine: Nanotechnology, Biology, and Medicine, 13(8), 2475-2484. https://doi.org/10.1016/j.nano.2017.08.008
  31. Palali, S. (2019). Cellulose Nanocrystals: Potential Replacement for Food Packaging. Science(July), 39-73.
  32. Panchal, P., Ogunsona, E., & Mekonnen, T. (2019). Trends in advanced functional material applications of nanocellulose [Review]. Processes, 7(1), Article 10. https://doi.org/10.3390/pr7010010
  33. Ranjbar, M., Sharifan, A., Shabani, S., & Amin Afshar, M. (2014). The Antimicrobial Effect of Garlic Extract on Staphylococous aureus and Escherichia coli O157: H7 in Ready to Cook Chicken. Journal of Food Technology and Nutrition, 11(4), 57-66.
  34. Rasheed, M. H., Kadhim, Q. S., Mohaimeed, A. A., & Alsaedi, R. J. (2024). Synthesis and Evaluation Structural, Thermal and Electrical Properties for PCL/TiO2 Nanocomposites. Transactions on Electrical and Electronic Materials, 1-11.
  35. Ribeiro, A. S., Costa, S. M., Ferreira, D. P., Calhelha, R. C., Barros, L., Stojković, D., Soković, M., Ferreira, I. C. F. R., & Fangueiro, R. (2021). Chitosan/nanocellulose electrospun fibers with enhanced antibacterial and antifungal activity for wound dressing applications [Article]. Reactive and Functional Polymers, 159, Article 104808. https://doi.org/10.1016/j.reactfunctpolym.2020.104808
  36. Salalha, W., Kuhn, J., Dror, Y., & Zussman, E. (2006). Encapsulation of bacteria and viruses in electrospun nanofibres [Article]. Nanotechnology, 17(18), 4675-4681, Article 025. https://doi.org/10.1088/0957-4484/17/18/025
  37. Salari, M., Sowti Khiabani, M., Rezaei Mokarram, R., Ghanbarzadeh, B., & Samadi Kafil, H. (2018). Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles [Article]. Food Hydrocolloids, 84, 414-423. https://doi.org/10.1016/j.foodhyd.2018.05.037
  38. Shen, H. Y., Liu, Z. H., Hong, J. S., Wu, M. S., Shiue, S. J., & Lin, H. Y. (2021). Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing [Article]. Journal of Controlled Release, 331, 154-163. https://doi.org/10.1016/j.jconrel.2021.01.024
  39. Singhaboot, P., Kraisuwan, W., Chatkumpjunjalearn, T., Kroeksakul, P., & Chongkolnee, B. (2023). Development and Characterization of Polyvinyl Alcohol/Bacterial Cellulose Composite for Environmentally Friendly Film [Article]. Journal of Ecological Engineering, 24(6), 226-238. https://doi.org/10.12911/22998993/162954
  40. Tolba, M., Minikh, O., Brovko, L. Y., Evoy, S., & Griffiths, M. W. (2010). Oriented immobilization of bacteriophages for biosensor applications [Article]. Applied and environmental microbiology, 76(2), 528-535. https://doi.org/10.1128/AEM.02294-09
  41. Topuz, F., Kilic, M. E., Durgun, E., & Szekely, G. (2021). Fast-dissolving antibacterial nanofibers of cyclodextrin/antibiotic inclusion complexes for oral drug delivery [Article]. Journal of Colloid and Interface Science, 585, 184-194. https://doi.org/10.1016/j.jcis.2020.11.072
  42. Vonasek, E., Le, P., & Nitin, N. (2014). Encapsulation of bacteriophages in whey protein films for extended storage and release [Article]. Food Hydrocolloids, 37, 7-13. https://doi.org/10.1016/j.foodhyd.2013.09.017
  43. Wang, B., Wang, H., Lu, X., Zheng, X., & Yang, Z. (2023). Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges [Review]. Foods, 12(14), Article 2795. https://doi.org/10.3390/foods12142795
  44. Xiao, M., Chery, J., & Frey, M. W. (2018). Functionalization of Electrospun Poly(vinyl alcohol) (PVA) Nanofiber Membranes for Selective Chemical Capture [Article]. ACS Applied Nano Materials, 1(2), 722-729. https://doi.org/10.1021/acsanm.7b00180
  45. Zhao, Y., Sun, H., Yang, B., & Weng, Y. (2020). Hemicellulose-based film: Potential green films for food packaging [Review]. Polymers, 12(8), Article 1775. https://doi.org/10.3390/polym12081775
  46. Zheng, T., Clemons, C. M., & Pilla, S. (2021). Grafting PEG on cellulose nanocrystals via polydopamine chemistry and the effects of PEG graft length on the mechanical performance of composite film [Article]. Carbohydrate Polymers, 271, Article 118405. https://doi.org/10.1016/j.carbpol.2021.118405
  47. Zhou, C., Chu, R., Wu, R., & Wu, Q. (2011). Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures [Article]. Biomacromolecules, 12(7), 2617-2625. https://doi.org/10.1021/bm200401p
  48. Zhou, H., Green, T. B., & Joo, Y. L. (2006). The thermal effects on electrospinning of polylactic acid melts. Polymer, 47(21), 7497-7505.

Zidan, H. M., Abdelrazek, E. M., Abdelghany, A. M., & Tarabiah, A. E. (2019). Characterization and some physical studies of PVA/PVP filled with MWCNTs [Article]. Journal of Materials Research and Technology, 8(1), 904-913. https://doi.org/10.1016/j.jmrt.2018.04.023