Feasibility of Using Ion Mobility Spectrometry in Combination with ‎Chemometric Methods for the Detection of Synthetic Colorants in Cherry and ‎Barberry Juices

Document Type : Research Article

Authors

1 Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, , Ahvaz, Iran

2 Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, ,Ahvaz, Iran

3 Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

4 Phd of Food Technology, Center of Research and Innovation, Ministry of Defense and Armed Forces Logistics,;Tehran, Iran

Abstract

Introduction: Color is an organoleptic attribute that directly affects consumers' acceptance and ‎choice of foods. Synthetic colorants have been associated with numerous side effects, including ‎toxicity, allergies, and behavioral and neurocognitive effects. Most fruit juice sold in the market ‎may contain synthetic color, which poses serious health risks. Red fruit juices, such as cherry and ‎barberry juice, have gained significant attention from consumers in recent years due to their ‎color, phytochemical components, and health benefits. Unfortunately, the potential for ‎adulteration with artificial colors in these juices is considerable, mainly when manufactured and ‎distributed through retail. There has been a growing interest in developing rapid techniques that ‎require minimal sample preparation for identifying such adulterations. Consequently, this study ‎proposes using spectral fingerprints generated by an ion mobility spectrometer (IMS) in ‎conjunction with multivariate data analysis as a user-friendly approach for detecting the ‎adulteration of cherry and barberry juices with various synthetic colorants, including Allura red, ‎Ponceau 4R, and Carmoisine.‎

Graphical Abstract

Feasibility of Using Ion Mobility Spectrometry in Combination with ‎Chemometric Methods for the Detection of Synthetic Colorants in Cherry and ‎Barberry Juices

Highlights

  • An effective and rapid IMS-CDI+ method has been developed to detect fraud in fruit juices.
  • Cherry and barberry juices were adulterated with Allura red, Ponceau 4R, and Carmoisine in different ratios.
  • A classification success rate of 91.15% for juices and colorants was achieved using PCA.
  • The partial least square models predicted the contents of colorants in juices.
  • The models used to quantify Allura Red in barberry juice yielded the best results.

Keywords

Main Subjects


[1]. Alizadeh, H. R., Mortezapour, H., Akhavan, H. R., & Balvardi, M. (2019). Performance of liquid desiccant-assisted solar juice concentration system for barberry juice. Sol. Energy., 184, 1-10. [In Persian]
[2].Wojdyło, A., Nowicka, P., Laskowski, P., & Oszmiański, J. (2014). Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J. Agric. Food Chem., 62(51), 12332-12345.
[3]. Arzanlou, M., Torbati, M., & Narmani, A. (2017). Podosphaera clandestina causes powdery mildew on sour cherry in Iran. Australas. Plant Dis. Notes., 12, 1-4. [In Persian]
[4]. Sharma, D., Jeet, K., & Kumar, S. (2024). Botanical study of Berberis vulgaris L of family berberidaceae: A review. Res J. Pharmacogn Phytochem., 16(1), 52-56.
[5]. Wistaff, E. A., Beller, S., Schmid, A., Neville, J. J., & Nietner, T. (2021). Chemometric analysis of amino acid profiles for of fruit juice adulterations–Application to verify authenticity of blood orange juice. Food Chem., 343, 128452.
[6]. Dasenaki, M. E., & Thomaidis, N. S. (2019). Quality and authenticity control of fruit juices-a review. Molecules, 24(6), 1014.
[7]. Ghasemi, detection F., Pirsa, S., Alizadeh, M., & Mohtarami, F. (2018). Extraction and determination of volatile organic acid concentration in pomegranate, sour cherry, and red grape juices by PPy-Ag nanocomposite fiber for authentication. Sep Sci. Technol.53(1), 117-125. [In Persian]
[8]. Alves, S. P., Brum, D. M., de Andrade, É. C. B., & Netto, A. D. P. (2008). Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection. Food Chem., 107(1), 489-496.
[9]. Amchova, P., Kotolova, H., & Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regul. Toxicol. Pharmacol., 73(3), 914-922.
[10]. Miller, M. D., Steinmaus, C., Golub, M. S., Castorina, R., Thilakartne, R., Bradman, A., & Marty, M. A. (2022). Potential impacts of synthetic food dyes on activity and attention in children: a review of the human and animal evidence. Environ. Health., 21(1), 45.
[11]. ISIRI (Institute of Standards and Industrial Research of Iran) (2019). Permitted food additives- Food colors- List and general specifications. Iranian National Standard 740, pp. 3-14. Tehran: Institute of Standards and Industrial Research of Iran. 6th revision. [In Persian]
[12]. ISIRI (Institute of Standards and Industrial Research of Iran) (2016). Permitted food additives- Food colors- List and general specifications. Iranian National Standard 2837, pp. 3-6. Tehran: Institute of Standards and Industrial Research of Iran. 3rd revision [In Persian].
[13]. Mohammadi, H., Vahedi, S., Hajimahmoodi, M., Nadjarian, A., Salsali, M., & Shokrzadeh, M. (2015). A Survey on the use of synthetic and natural fruit colores in non-certified juice and fruit products in Tehran, Iran. JMUMS., 24(120), 159-172.
[14]. Akbari-Adergani, B., Poorasad, M., & Esfandiari, Z. (2018). Sunset yellow, tartrazine and sodium benzoate in orange juice distributed in Iranian market and subsequent exposure assessment. Int. Food Res. J., 25(3), 975-981.
[15]. Gholami, Z., Marhamatizadeh, M. H., Mazloomi, S. M., Rashedinia, M., & Yousefinejad, S. (2021). Identification of synthetic dyes in traditional juices and beverages in Shiraz, Iran. Int. J. Nutr Sci., 6(1), 39-44.
[16]. Alizadeh, M., Pirsa, S., & Faraji, N. (2017). Determination of lemon juice adulteration by analysis of gas chromatography profile of volatile organic compounds extracted with nano-sized polyester-polyaniline fiber. Food Anal.Methods., 10, 2092-2101 [In Persian]
[17]. Ghasemi, F., Alizadeh, M., Pirsa, S., & Mohtarami, F. (2019). Study of the physicochemical properties/gas chromatography profile of adulterated pomegranate juice by nano-composite-fiber. JAST., 21(6), 1447-1458.
[18]. Karpas, Z. (2013). Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Res Int., 54(1), 1146-1151.
[19]. Roberts, J. J., & Cozzolino, D. (2016). An overview on the application of chemometrics in food science and technology—An approach to quantitative data analysis. Food Anal. Methods., 9(12), 3258-3267.
[20]. Fattahi, R., Mani-Varnosfaderani, A., Barzegar, M., & Sahari, M. A. (2023). An ion mobility spectrometry-chemometrics combination approach for assessing adulteration in saffron (Crocus sativus L.) with synthetic colorants. Ind Crops Prod., 193, 116161. [In Persian].
[21]. Fattahi, R., Mani-Varnosfaderani, A., Barzegar, M., & Sahari, M. A. (2022). Rapid metabolites fingerprinting by ion mobility spectrometry: A novel evaluation method for bio-adulteration of saffron (Crocus sativus L.). Ind Crops and Prod.188, 115707. [In Persian]
[22]. Sobhaninia, M., Mani-Varnosfaderani, A., Barzegar, M., & Sahari, M. A. (2024). Combining ion mobility spectrometry and chemometrics for detecting synthetic colorants in black tea: A reliable and fast method. Food Chem: X., 21, 101213. [In Persian]
[23].        Khalesi, M., Sheikh-Zeinoddin, M., & Tabrizchi, M. (2011). Determination of ochratoxin A in licorice root using inverse ion mobility spectrometry. Talanta., 83(3), 988-993. [In Persian]
[24].        Lai, H. T. (2010). The construction and optimization of an ion mobility spectrometer for the analysis of explosives and drugs. Florida International University.
[25].        Golavar, B., Sheibani, A., & Tabatabaee, M. (2019). Detection and measurement of acetone in the diabetics by ion mobility spectrometry methods. IJDLD., 18 (5), 257-265 [In Persian]
[26]. Tabrizchi, M., & Rouholahnejad, F. (2004). Corona discharge ion mobility spectrometry at reduced pressures. Rev. Sci. Instrum., 75(11), 4656-4661. [In Persian]
[27].        Jiao, J., Wang, J., Li, M., Li, J., Li, Q., Quan, Q., & Chen, J. (2016). Simultaneous determination of three azo dyes in food product by ion mobility spectrometry. J. Chromatogr. B., 1025, 105-109.
[28].        Sheibani, A., Tabrizchi, M., & Ghaziaskar, H. S. (2008). Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta, 75(1), 233-238. [In Persian]
[29]. Tabrizchi, M., & ILbeigi, V. (2010). Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater., 176(1-3), 692-696. [In Persian]
[30]. Zhang, L., Shuai, Q., Li, P., Zhang, Q. I., Ma, F., Zhang, W., & Ding, X. (2016). Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil. Food Chem.192, 60-66.
[31]. Song, J., Shao, Y., Yan, Y., Li, X., Peng, J., & Guo, L. (2021). Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA. LWT-Food Sci. Technol., 146, 111292.
[32]. Garrido-Delgado, R., Muñoz-Pérez, M. E., & Arce, L. (2018). Detection of adulteration in extra virgin olive oils by using UV-IMS and chemometric analysis. Food Control., 85, 292-299.
[33]. Shuai, Q., Zhang, L., Li, P., Zhang, Q., Wang, X., Ding, X., & Zhang, W. (2014). Rapid adulteration detection for flaxseed oil using ion mobility spectrometry and chemometric methods. Anal Methods., 6(24), 9575-9580.
[34]. Aliaño-González, M. J., Ferreiro-González, M., Espada-Bellido, E., Barbero, G. F., & Palma, M. (2020). Novel method based on ion mobility spectroscopy for the quantification of adulterants in honeys. Food Control.114, 107236.
[35]. Shamshiri, N., Fattahi, R., Mani-Varnosfaderani, A., Barzegar, M., & Sahari, M. A. (2024). Geographical authentication of saffron by chemometrics applied to the ion mobility spectrometry data. Food Chemistry: X.22, 101455. [In Persian]