بررسی ویژگی‌های فیزیکی و آنتی‌اکسیدانی ریزکپسول‌های حاوی عصاره بهارنارنج تهیه شده با روش خشک‌کردن پاششی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علوم و مهندسی صنایع غذایی، گروه علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

2 استادیار، گروه علوم و مهندسی صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

3 دانشیار، مرکز تحقیقات دارویى، دانشگاه علوم پزشکى تبریز، تبریز

چکیده

در این پژوهش ریزپوشانی ترکیبات پلی‌فنولی عصاره بهارنارنج با هدف ارائه راه‌حل برای بهبود پایداری و محافظت از آن‌ها در برابر اکسیداسیون، نور، رطوبت و دما مورد بررسی قرار گرفت. به این منظور یک دستگاه خشک‌کن ‌پاششی آزمایشگاهی برای تولید ریزکپسول‌های عصاره بهارنارنج با استفاده از مالتودکسترین(MD)، صمغ‌عربی(GA) و ترکیب این دو(MD+GA) به‌عنوان مواد پوشش‌دهنده استفاده شد. آزمون‌های بازده تولید پودر، محتوای ترکیبات فنولی و بازده ریزپوشانی، ظرفیت آنتی‌اکسیدانی، رطوبت، جاذبه‌الرطوبه بودن، چگالی‌توده‌ای، حلالیت، شکل و اندازه‌ ذرات مورد ارزیابی قرار گرفتند. نتایج این تحقیق به‌ وضوح نشان‌ داد که محصورسازی عصاره بهارنارنج توسط خشک‌کن‌پاششی با استفاده از مالتودکسترین مؤثر بوده و بهره‌وری بالاتری(بالاتر از 90%) نسبت به دو ماده دیواره‌ای دیگر داشت. هم‌چنین ریزکپسول مالتودکسترین دارای بازده تولید پودر بالاتر(40/87%)، فعالیت آنتی‌اکسیدانی بهتر(91/60%)، رطوبت پایین(10/2%)، جذب رطوبت پایین(76/45%)، چگالی‌توده‌ای پایین(g/ml449/0)، حلالیت بالا(38/79%) و ساختار شکل مناسب‌تر از ریزکپسول‌های دیگر بود. درخصوص اندازه ذرات تفاوت معناداری بین نمونه‌ها مشاهده نشد. در نهایت ریزکپسول عصاره بهارنارنج خشک شده با مالتودکسترین، به عنوان کارآمدترین ریزکپسول ارائه شد.

چکیده تصویری

بررسی ویژگی‌های فیزیکی و آنتی‌اکسیدانی ریزکپسول‌های حاوی عصاره بهارنارنج تهیه شده با روش خشک‌کردن پاششی

تازه های تحقیق

  • ریزکپسول بهارنارنج توسط خشک کردن پاششی عصاره بهارنارنج و مخلوط آن با صمغ‌عربی، مالتودکسترین و ترکیب این دو تهیه شد.
  • اثر صمغ‌عربی، مالتودکسترین و ترکیب این دو بر خصوصیات فیزیکی، شیمیایی و آنتی‌اکسیدانی پودرهای ریزپوشانی شده بررسی شد.
  • ریزکپسول عصاره بهارنارنج خشک شده با مالتودکسترین، به‌عنوان کارآمدترین ریزکپسول ارائه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study physical and antioxidant properties of the microencapsules of Citrus aurantium extract prepared by spray drying method

نویسندگان [English]

  • Elahe Sadat ghazali 1
  • Mehdi Gharekhani 2
  • Hamed Hamishekar 3
1 M.Sc student, Department of Food science and engineering, Tabriz branch, Islamic Azad University, Tabriz, Iran
2 Assistant Professor, Department of Food science and technology, Tabriz branch, Islamic Azad University, Tabriz, Iran
3 Associate Professor, Drug Applied Research Center, Tabriz University of Medical Sciences
چکیده [English]

In this research, the microcapsulation of polyphenolic compounds of citrus aurantium extract was designed to provide a solution by improving their stability and protecting them against oxidation, light, moisture and temperature. For this purpose, a lab scale spray-dryer was used to produce microcapsules of Citrus aurantium extract using maltodextrin(MD), gum arabic(GA) and their combination(MD+GA) as a coating material. Quizzes powder production yields, phenolic compounds content and encapsulation efficiency, antioxidant capacity, moisture content, hygroscopicity, bulk density, solubility, morphology and particle size were evaluated. The results of this study clearly showed that the encapsulation of the Citrus aurantium extract with spray dryer by using maltodextrin was effective and had higher productivity(above 90%) than two other wall materials. Also, maltodextrin capsule has a higher yields(87.4%), better antioxidant activity(60.91%), low moisture content(2.10%), low hygroscopicity(45.76%), low bulk density(0.449g/ml), high solubility(79.38%) and morphological structure were better than other capsules. Particle size was not significantly different in samples. Finally, the microcapsule of the Citrus aurantium extract dried by maltodextrin was presented as the comprehensively microcapsule.

کلیدواژه‌ها [English]

  • Encapsulation
  • Citrus aurantium
  • Phenolic compounds
  • Spray drying
  • Gum Arabic
  • Maltodextrin
[1] Park, K., Park, H., Kim, M., Hong, G., Nagappan, A., Lee, H., Yumnam, S., Lee, W., Won, Ch., Shin, S., Kim, G. (2014). Flavonoids identified from Korean Citrus aurantium L. inhibit Non Small Cell Lung Cancer growth in vivo and in vitro. J. Funct. Foods., 7, 287-297.

[2] Sarrou, E., Chatzopoulou, P., Dimassi-Theriou, K., Therios, L. (2013). Volatile Constituents and Antioxidant Activity of Peel, Flowers and Leaf Oils of Citrus aurantium L. Growing in Greece. Molecules., 18,10639-10647.

[3] Ben Hsouna, A., Hamdi, N., Ben Halima, N., Abdelkafi, S. (2013). Characterization of essential oil from Citrus aurantium L. flowers: antimicrobial and antioxidant activities. J. Oleo Sci., 62, 763-772.

[4] Torres, M., Santiago-Adame, R., Calderas, F., Gallegos-Infante, J.A., González-Laredo, R.F., Rocha-Guzmán, N.E., Nú˜nez-Ramíreze, D.M., Bernad-Bernada, M.J., ManerobaFacultad, O. (2016). Microencapsulation by spray drying of laurel infusions(Litsea glaucescens) with maltodextrin. Ind Crops Prod., 90, 1-8.

[5] Hong Wang, Q., Peng Shu, Z., Qing Xu, B., Xing, N., Juan Jiao, W., You Yang, B., Xue Kuang, H. (2014). Structural characterization and antioxidant activities of polysaccharides from Citrus aurantium L. Int. J. Biol.  Macromol., 67,112-123.

[6] Lu, Q., Yang, L., Zhao, H., Jiang, J., Xu, X. (2013). Protective effect of compounds from the flowers of Citrus aurantium L. var. amara Engl against carbon tetrachloride-induced hepatocyte injury. Food Chem.  Toxicol., 62,432-435.

[7] Dordevic, V., Belscak Cvitanovic, A., Drvenica, I., Komes, D., Nedovic, V., Bugarski, B. (2017). Nanoscale nutrient delivery systems. In: Grumezescu, A. Nutrient Delivery. Elsevier, Chapter 3, pp 87-139.

[8] Laokuldilok, N., Thakeow, P., Kopermsub, P., Utama-ang, N. (2016). Optimization of microencapsulation of turmeric extract for masking flavor. Food Chem., 194, 695-704.

[9] Pandit, J., Aqil, M., Sultana, Y. (2016). Nanoencapsulation technology to control release and enhance bioactivity of essential oils. In: Grumezescu, A. Encapsulations, Elsevier, Chapter 14, pp 597-640.

[10] Ezhilarasi, P.N., Indrani, D., Jena, B.S., Anandharamakrishnan, C. (2013). Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. J. Food Eng., 117, 513-520.

[11] Paramera, E.I., Konteles, S.J., Karathanos, V.T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem., 125, 892-902.

[12] Ersus, S., Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of blackcarrot (Daucus carota L.) by spray drier. J. Food Eng., 80, 805-812.

[13]  هاشمی، م.؛ صفری، ج.؛  صادقی، ب.؛ غفوری، م. (1396) بررسی فعالیت آنتی‌اکسیدانی عصاره بهارنارنج در مقایسه با TBHQ در روغن ذرت تیمار شده با اشعه فرابنفش. علوم و صنایع غذایی، شماره 65، دوره 14، ص 104-97.

[14]  کورشیان، م.؛ شریفی، الف.؛ مهدیان، الف.؛ بلوریان، ش. (1394) بررسی خصوصیات فیزیکی ریزکپسول‌های عصاره تمشک سیاه وحشی تهیه شده با روش خشک‌کن‌پاششی. نشریه‌ ینوآوری در علوم و فن‌ آوری غذایی، سال 7، شماره‌ 4، ص 94-85.

[15] Rajabi, H., Ghorbani, M., Jafari, S., Sadeghi Mahoonak, A., Rajabzadeh, Gh. (2015).  Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocoll., 51,327-337.

[16] Chaul, L., Conceicão, C., Baraa, M.T., Paulaa, J., Couto, R. (2017). Engineering spray-dried rosemary extracts with improved physicomechanical properties: a design of experiments issue. Rev. Bras. Farmacog., 27, 236-244.

[17] Tolun, A., Altintas, Z., Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. J. Biotechnol., 239,23-33.

[18] Boonchu, T., Utama, N. (2015). Optimization of extraction and microencapsulation of bioactive compounds from red grape (Vitis vinifera L.). J. Food Sci. Technol., 52, 783-792

[19] Ferrari, C.C., Germer, S.P.M., Alvim, I.D., Aguirre, J.M. (2013). Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic. Dry. Technol., 31, 470-478.

[20] Fathi, M., Mart, A., Clements, D.J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Sci. Technol., 39, 18-39.

[21] López-Córdoba, A., Deladino, L., Agudelo-Mesa, L., Martino, M. (2014). Yerba mate antioxidant powders obtained by co-crystallization:Stability during storage. J. Food Eng., 124,158-165.

[22] Capannesi, C., Palchetti, I., Mascini, M., Parenti, A. (2000). Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem., 71, 553-562.

[23] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 28, 25-30.

[24] Goula, A.M., Adamopoulos, K.G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: Drying kinetics and product recovery. Dry. Technol., 26,714-725.

[25] Santhalakshmy, S., Bosco, S.J.D., Francis, S., Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol., 274,37-43.

[26] Cano-Chauca, M., Stringheta, P.C., Ramos, A.M., Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Inno. Food Sci. Emerg. Technol., 6, 420-428.

[27] Pasrija, D., Ezhilarasi, P.N., Indrani, D., Anandharamakrishnan, C. (2015). Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT - Food Sci. Technol., 64, 289-296.

[28] Santana, A., Cano-Higuita, D., De Oliveira, R., Telis, V. (2016). Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chem., 212, 1-9.

[29] Akbas, E., Kilercioglu, M., Onder, O., Koker, A., Soyler, B., Oztop, M. (2017). Wheatgrass juice to wheat grass powder: Encapsulation, physical and chemical characterization. J.  Funct. Foods., 28,19-27.

[30] Karimi, E., Oskoueian, E., Hendra, R., Oskoueian,A., Hawa, Z.E. (2012). Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules., 17,1203-1218.

[31] Caliskan, G., Dirim, S.N. (2013). The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and bioprod. process., 91,539-548.

[32] Moser, P., Telis, N., Neves, N.A., García-Romero, E., Gómez-Alonso, S., Hermosín-Gutiérrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chem., 214, 308-318.

[33] Zhou, D.,  Pan, Y., Ye, J., Jia, J., Ma, J., Ge, F. (2017). Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT - Food Sci. Technol., 83,292-297.

[34] Simon-Brown, k., MisSolval, k., Chotiko, A., Alfaro, L., Reyes, V., Liu, Ch., Dzandu, B., Barnaby, E., Thompsona, I., Xu, Z. (2016). Microencapsulation of ginger (Zingiber officinale) extract by spray drying technology. LWT - Food Sci. Technol.. 70,119-125.

[35] Bhandari, B.R., Dumoulin, E.D., Richard, H.M.J., Noleau, I., Lebert, A.M. (1992). Flavor encapsulation by spray drying: Application to citral and linalyl acetate. J.  Food Sci., 57,217-221.

[36] Grabowski, J.A., Truong, V.D., Daubert, C.R. (2006). Spray-drying of amylase hydrolyzed sweet potato puree and physicochemical properties of powder. J. Food Sci., 71, 209-217.

[37] Ezhilarasi, P.N., Indrani, D., Jena, B.S., Anandharamakrishnan, C. (2014). Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality. J. Sci. Food Agric., 94, 1116-1123.

[38] Kha, T.C., Nguyen, M.H., Roach, P.D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J. Food Eng., 98,385-392.

[39] Mishra, P., Mishra, S., Mahanta, C.L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod. Process., 92, 252-258.

 [40] سرابندی، خ.؛ پیغمبردوست، س.ه. (1394) تأثیر برخی پارامترهای تولید و زمان نگه‌داری بر ویژگی‌های جریان‌پذیری پودر عصاره مالت خشک شده به روش پاششی. مجله علوم تغذیه وصنایع غذایی ایران، سال 10، شماره 1، ص 60-51.

[41] Vidović, S.S., Vladić, J.Z., Vaštag, Ž.G., Zeković, Z.P., Popović, L.M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technol., 258, 209-215.

[42] Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J.A., Calderas, F., Gonz_alez-Laredo, R.F., Rocha-Guzman, N.E., Ochoa-Martínez, L.A., Bernad-Bernad, M.J. (2015). Spray drying microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT - Food Sci. Technol., 64, 571-577.

[43] Mahdavee Khazaei, K., Jafari, S.M., Ghorbani, M., Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydr. Polym., 105,57-62.

[44] Pai, D., Vangala, V., Wei Ng, J., Kiong Ng, W., Tan, R. (2015). Resistant maltodextrin as a shell material for encapsulation of naringin: Production and physicochemical characterization. J. Food Eng., 161, 68-74.