تاثیر حمام التراسونیک، نسبت سورفاکتانت به روغن و غلظت موسیلاژ دانه به بر ویژگی‌های نانوامولسیون خودبخودی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، علوم و صنایع غذایی، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه

2 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه

3 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس

4 استادیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه کردستان

چکیده

هدف از این مطالعه بررسی ویژگی‌های نانوامولسیون روغن در آب تثبیت شده با مخلوط ایزوله پروتئین آب پنیری (1 درصد وزنی/حجمی) و موسیلاژ دانه به (1/0 و 5/0 درصد وزنی/حجمی) به روش کم انرژی خودبخودی و پر انرژی هموژنایزر فراصوت است. ازآنجاکه مشکل اصلی روش امولسیون سازی خودبخودی استفاده از مقادیر بالای سورفاکتانت‌های سنتزی است بنابراین یکی از اهداف این تحقیق بررسی تأثیر نسبت‌های مختلف سورفاکتانت به روغن (1:1، 2:1 و 3:2 =SOR) و تیمار کمکی حمام التراسونیک روی ویژگی‌های نانوامولسیون خودبخودی بود. پارامترهای اندازه ذرات، پتانسیل زتا، ویسکوزیته ظاهری و پایداری نانوامولسیون مورد بررسی قرار گرفت. در این مطالعه امولسیون‌های با قطر ذرات کمتر از 200 نانومتر به‌خوبی تهیه شدند. افزایش غلظت موسیلاژ و نسبت سورفاکتانت به روغن باعث کاهش معنی‌دار اندازه ذرات، افزایش اندک پتانسیل زتا (افزایش نگاتیویتی)، افزایش ویسکوزیته، کاهش اندیس خامه‌ای شدن و افزایش شاخص پایداری امولسیون‌ها شد. نمونه‌های حاصل از روش پر انرژی و نمونه‌های که با حمام التراسونیک تیمار شده‌اند دارای کمترین اندازه ذرات، کمترین مقدار شاخص خامه‌ای شدن و بیشترین شاخص پایداری امولسیون بودند. نتایج این تحقیق نشان داد که می‌توان با یک تیمار ساده توسط حمام التراسونیک می‌توان نانوامولسیون خودبخودی با ذرات بسیار کوچک (در ابعاد نانومتر) بدون نیاز به غلظت‌های بالای سورفاکتانت‌های سنتزی را تهیه کرد.

چکیده تصویری

تاثیر حمام التراسونیک، نسبت سورفاکتانت به روغن و غلظت موسیلاژ دانه به بر ویژگی‌های نانوامولسیون خودبخودی

تازه های تحقیق

  • نانوامولسیون خودبه‌خودی حاوی موسیلاژ دانه به و ایزوله پروتئین آب پنیر به‌خوبی ساخته شد.
  • به‌جای افزایش سورفاکتانت می­توان با تیمار نانوامولسیون­ها توسط حمام التراسونیک اندازه ذرات را کاهش داد.
  • شاخص پایداری امولسیون­های حاوی موسیلاژ بیشتر از نمونه شاهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of ultrasonic bath, surfactant to oil ratio and quince seed mucilage concentration effect on spontaneous nanoemulsion properties

نویسندگان [English]

  • Reza Ghadermazi 1
  • Asghar Khosrowshahi Asl 2
  • Mohammad Hossein Azizi 3
  • Fardin Tamjidi 4
1 Ph.D. of Food Science and Technology, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Professor, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Professor, Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
4 Assistant Professor, Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

The aim of this study was to investigate the properties of oil in water nanoemulsion stabilized with whey protein isolate (1% w/v) and quince seed mucilage (0.1 and 0.5% w/v) by low energy method of spontaneous emulsification and high energy method of ultrasound homogenizer. Since the main problem in utilization of spontaneous emulsification method is the use of high amounts of synthetic surfactants, one of the objectives of this study was to investigate the effect of different surfactant to oil ratios (SOR= 1:1, 2:1 and 3:2) and ultrasonic bath supplementation on spontaneous nanoemulsion properties. Nanoemulsion characteristics such as particle size, zeta potential, viscosity and stability of nanoemulsion were studied. In this study, nanoemulsions with the particle size less than 200 nm were well prepared. Increasing the mucilage concentration and the surfactant to oil ratio resulted in a significant reduction in particle size, a slight increase in zeta potential (increase in negativity), increased viscosity, decreased creaming index and increased emulsions stability index. The nanoemulsions from the high energy method and the nanoemulsions treated with ultrasonic bath have the lowest particle size, creaming index, and highest emulsions stability index. The results of this study showed that by a simple treatment with an ultrasonic bath, it was possible to create spontaneous nanoemulsions with very small particle size (with nm dimensions) without using high concentrations of synthetic surfactants.

کلیدواژه‌ها [English]

  • Spontaneous Nanoemulsion
  • Ultrasonic Bath
  • Quince Seed Mucilage
  • Whey Protein Isolated
[1]     Komaiko, J., McClements, D.J., (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. J. Food Eng. 146, 122-128.
[2]     McClements, D.J., Rao, J., (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51(4), 285-330.
[3]     Velikov, K.P., Pelan, E., (2008). Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter. 4(10), 1964-1980.
[4]     Wooster, T.J., Golding, M., Sanguansri, P., (2008). Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir. 24(22), 12758-12765.
[5]     Mason, T., Wilking, J., Meleson, K., Chang, C., Graves, S., (2006). Nanoemulsions: formation, structure, and physical properties. J. Phy. condens. matter. 18(41), 635–666.
[6]     Komaiko, J., McClements, D.J., (2014). Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems. J. Colloid. Interface Sci. 425, 59-66.
[7]     Jafari, S.M., He, Y., Bhandari, B., (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 82(4), 478-488.
[8]     Tadros, T., Izquierdo, P., Esquena, J., Solans, C., (2004). Formation and stability of nano-emulsions. Advances in Colloid. Interface Sci. 108, 303-318.
[9]     Abbas, S., Hayat, K., Karangwa, E., Bashari, M., Zhang, X., (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng. Rev. 5(3), 139-157.
[10] Roohinejad, S., et al., (2018). Emulsion-based Systems for Delivery of Food Active Compounds: Formation, Application, Health and Safety. Wiley Online Library.
[11] Noroozi, M., Radiman, S., Zakaria, A., (2014). Influence of sonication on the stability and thermal properties of Al2O3 nanofluids. J. Nanomaterials. Article ID 612417, 2014, 10 pages.
[12] Solans, C., Solé, I., (2012). Nano-emulsions: formation by low-energy methods. Curr. Opin. Colloid. Interface. Sci. 17(5), 246-254.
[13] Moayedzadeh, S., Khosrowshahi asl, A., Gunasekaran, S., Madadlou, A., (2018). Spontaneous emulsification of fish oil at a substantially low surfactant-to-oil ratio: Emulsion characterization and filled hydrogel formation. Food Hydrocolloid. 82, 11-18.
[14] Saberi, A.H., Fang, Y., McClements, D.J., (2013). Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci. 391, 95-102.
[15] Anton, N., Benoit, J.-P., Saulnier, P., (2008). Design and production of nanoparticles formulated from nano-emulsion templates—a review. J. Contr. Release. 128(3), 185-199.
[16] Najafi-Taher, R., Amani, A., (2017). Nanoemulsions: colloidal topical delivery systems for antiacne agents-A Mini-Review. Nanomedicine Res. J. 2(1), 49-56.
[17] Pezeshky, A., Ghanbarzadeh, B., Hamishehkar, H., Moghadam, M., Fathollahi, I., (2016). Vitamin A palimitate-loaded nanoemulsions produced by spontaneous emulsification method: effect of surfactant and oil on droplet size and stability. J. Res. Innovat. Food Sci. Tech.. 4(4), 299-314.
[18] Jouki, M., et al., (2014). Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. Int. J. Biolo. Macro. 66, 113-124.
[19] Ghadermazi, R., Khosrowshahi-Asl, A., Tamjidi, F., (2019).Optimization of whey protein isolate-quince seed mucilage complex coacervation. Int. J. Biolo. Macro. 131, 368–377.
[20] Khalesi, H., Emadzadeh, B., Kadkhodaee, R., Fang, Y., (2016). Whey protein isolate-Persian gum interaction at neutral pH. Food Hydrocolloid. 59, 45-49.
[21] Ozturk, B., et al., (2015). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chem. 188, 256-263.
[22] Shamsara, O., et al., (2015). Effect of ultrasonication, pH and heating on stability of apricot gum–lactoglobuline two layer nanoemulsions. Int. J. Biolo. Macro. 81, 1019-1025.
[23] Kaltsa, O., et al., (2013). Ultrasonic energy input influence on the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrasonics sonochem. 20(3), 881-891.
[24] Abbastabar, B., Azizi, M.H., Adnani, A., Abbasi, S., (2015). Determining and modeling rheological characteristics of quince seed gum. Food Hydrocolloid. 43, 259-264.
[25] Zhang, R., Zhang, Z., Kumosani, T., Khoja, S., Abualnaja, K.O., McClements, D.J., (2016). Encapsulation of β-carotene in nanoemulsion-based delivery systems formed by spontaneous emulsification: influence of lipid composition on stability and bioaccessibility. Food biophys. 11(2), 154-164.
[26] McClements, D.J., (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter. 7(6), 2297-2316.
[27] Anton, N., Vandamme, T.F., (2009). The universality of low-energy nano-emulsification. Int. J. Pharm. 377(1-2), 142-147.
[28] Prabhakar, K., Afzal, S.M., Surender, G., Kishan, V., (2013). Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta. Pharm. Sin. B. 3(5), 345-353.
[29] Dickinson, E., (2009). Hydrocolloid as emulsifiers and emulsion stabilizers. Food Hydrocolloid. 23(6), 1473-1482.
[30] Xu, D., Wang, X., Jiang, J., Yuan, F., Gao, Y., (2012). Impact of whey protein–Beet pectin conjugation on the physicochemical stability of β-carotene emulsions. Food Hydrocolloid. 28(2), 258-266.
[31] Wang, Y., Li, D., Wang, L.-J., Adhikari, B., (2011). The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). J. Food Eng. 104(1), 56-62.
[32] Mohammadzadeh, H., Koocheki, A., Kadkhodaee, R., Razavi, S.M., (2013). Physical and flow properties of d-limonene-in-water emulsions stabilized with whey protein concentrate and wild sage (Salvia macrosiphon) seed gum. Food Res. Int.. 53(1), 312-318.
[33] Alipour, A., Koocheki, A., Kadkhodaee, R., Varidi, M., (2015). The effect of alyssum homolocarpum seed gum-whey protein concentrate on stability of oil-in-water emulsion. Food Sci. Tech. 12(48), 163-174
[34] Anuchapreeda, S., Fukumori, Y., Okonogi, S., Ichikawa, H., (2012). Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. J. nanotechnology. Article ID 270383, 2012, 11 pages.
[35] Hassanzadeh, H., Alizadeh, M., Bari, M.R., (2018). Formulation of garlic oil-in-water nanoemulsion: antimicrobial and physicochemical aspects. IET Nanobiotechnology. 12(5), 647-652.
[36] Maskan, M., Göǧüş, F., (2000). Effect of sugar on the rheological properties of sunflower oil–water emulsions. J. Food Eng. 43(3), 173-177.
[37] Khalloufi, S., Alexander, M., Goff, H.D., Corredig, M., (2008). Physicochemical properties of whey protein isolate stabilized oil-in-water emulsions when mixed with flaxseed gum at neutral pH. Food Res. Int.. 41(10), 964-972.
[38] Khalloufi, S., Corredig, M., Goff, H.D., Alexander, M., (2009). Flaxseed gums and their adsorption on whey protein-stabilized oil-in-water emulsions. Food Hydrocolloid. 23(3), 611-618.
[39] Akbari, E., Ghorbani, M., Sadeghi Mahonak, A., Alami, M., Kashaninejad, M., Nasrollahzadeh, A., (2016). Investigation of sage seed gum and whey- protein on the stability of the Oil-water emulsion with using response surface methodology (RSM). Innovat Food Sci. Emerg. Tech. 3(4), 47-56.
[40] Soleimanpoor, M., Kadkhodaee, R., Koocheki, A., Razavi, S., (2013). Effect of qodumeh shahri seed gum on physical properties of corn-oil in water emulsion prepared by high intensity ultrasound. Iranian Food Sci. Tech. Res. J. 9(1), 21-30.
[41] Kirtil, E., Oztop, M.H., (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Res. Int.. 85, 84-94.
[42] Dickinson, E., Stainsby, G., (1988). Advances in food emulsions and foams Edited by E. Dickinson and G. Stainsby, Elsevier Applied Science, London, 344-385.
[43] Ritzoulis, C., Marini, E., Aslanidou, A., Georgiadis, N., Karayannakidis, P.D., Koukiotis, C., Filotheou, A., Lousinian, S., Tzimpilis, E., (2014). Hydrocolloid from quince seed: Extraction, characterization, and study of their emulsifying/stabilizing capacity. Food Hydrocolloid. 42, 178-186.