استخراج و بررسی خصوصیات فیزیکوشیمیایی پکتین استخراجی از ضایعات کلاهک بادمجان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی،واحد ورامین پیشوا، ورامین-ایران

2 دانش آموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی،واحد ورامین پیشوا، ورامین-ایران

چکیده

همراه با افزایش تولید و فراوری میوه و سبزیجات، فراورده‌های جانبی زیادی به وجود می‌آید. کلاهک حاصل از بادمجان نیز یکی از فراورده‌های جانبی است که دارای مواد با ارزشی مانند پکتین است و می‌تواند هم از جنبه اقتصادی و هم از نظر زیست محیطی سودمند باشد. هدف کلی از این پژوهش بررسی تاثیر سه متغیر دما (60، 75، 90 درجه سانتی‌گراد)، زمان (50، 100، 150 دقیقه) و pH (5/1، 25/2 و3) بر میزان بازدهی، درصد گالاکتورونیک اسید و درجه استریفیکاسیون پکتین استخراج شده از کلاهک بادمجان بود. از روش سطح پاسخ به منظور بهینهسازی شرایط استخراج استفاده گردید. جهت بررسی خصوصیات فیزیکوشیمیایی پکتین بدست آمده آزمونهای پایداری امولسیونی در روزها و دماهای مختلف و بررسی رفتار جریانی در غلظت‌های متفاوت و FT-IR انجام گردید. مطابق با نتایج، بالاترین بازدهی استخراج از کلاهک بادمجان، 30/12 درصد در شرایط شدید استخراج دما 90 درجه سانتی‌گراد، زمان 150 دقیقه و pH، 5/1 مشاهده گردید. بالاترین میزان درصد گالاکتورونیک اسید پکتین استخراجی از کلاهک، 84/39 درصد، در شرایط دمای 75 درجه سانتی‌گراد، زمان 100دقیقه و pH، 25/2 مشاهده گردید. بالاترین درجه استریفیکاسیون پکتین استخراجی از کلاهک 75/51 درصد در شرایط دمای 60 درجه سانتی‌گراد، زمان50 دقیقه و pH، 3 بود. نتایج آنالیز واریانس نشان داد که دمای استخراج موثرترین فاکتور بر بازده و درجه استریفیکاسیون پکتین استخراج شده بود. بیشترین پایداری امولسیون پکتین کلاهک بادمجان در دمای 4 درجه سانتی‌گراد و روز اول بوده است. با افزایش غلظت نمونه‌های پکتین (از 1/0 تا 2 درصد)، ویسکوزیته آن‌ها افزایش یافته است و رفتار تمام نمونه‌ها نیوتنی بوده و اندیس جریان آن‌ها نزدیک به یک بود. نتایج FT-IR نیز نشان داد که جذب قوی بین1-cm3000 در نمونه پکتین استخراج شده مربوط به لرزش داخل و خارج سلولی باند هیدروژنی در پلیمر گالاکتورونیک اسید بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Extraction and investigation of physicochemical properties of pectin extracted from eggplant cap waste

نویسندگان [English]

  • Leila Nateghi 1
  • Somayeh Ansari 2
1 Assistant professor, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
2 MSc graduate, Department of of Food Science and Technology, Varamin Branch, Islamic Azad University, Varamin, Iran
چکیده [English]

Along with increased production and fruit and vegetable processing, there is a lot of byproducts. Eggplant cap is also one of the byproducts which contains valuable materials such as pectin which is both economically and environmentally beneficial. The general objective of this research was to investigate the effect of three temperature variables (60, 75 and 90°C), time (50, 100 and 150 min) and pH (1.5, 2.52 and 3) on the rate of yield, percentage of galacturonic acid and degree of pectin esterification extracted from the eggplant cap. The response surface methodology was used to optimize the extraction conditions. In order to study the physicochemical properties of obtained pectin, emulsion stability tests were carried out at different days and temperatures and flow behavior in different concentrations and FT-IR were performed. According to the results, the highest extraction yield of the eggplant cap was observed in 12.30% under severe conditions of extraction at 90 °C, 150 min and pH 1.5. The highest galacturonic acid percentage of extracted pectin of eggplant cap was observed 39.84%, at 75°C, 100 min and pH, 2.52. The highest esterification degree of extracted pectin of eggplant cap was 51.750, at 60°C, 50 min and pH 3. The results of analysis of variance showed that extraction temperature was the most effective factor on the yield and esterification degree of extracted pectin. The highest emulsion stability of eggplant cap pectin was at 4 °C and the first day. With increasing the concentrations of pectin samples (from 0.1 to 2%), their viscosity was increased and flow behavior of all samples were Newtonian and their flow index was close to one. FT-IR results also showed that the strong absorption between 3000 cm-1 in the extracted pectin samples was related to intra-and extracellular vibration of the hydrogen bond in the galacturonic acid polymer.

کلیدواژه‌ها [English]

  • Extraction optimization
  • Eggplant cap
  • Pectin
  • Physicochemical properties
[1] Baiano, A. (2014). Recovery of biomolecules from food wastes- A review. Molecules., 19(9), 14821-14842.

[2] Kratchanova, M.,  Pavlova, E., Panchev, I., Kratchanov, C. (2012). Influence of microwave pretreatment of fresh orange peels on pection extraction. Biotechnol. Prog., 14, 941-946.

[3] Sharma, M. A. (2006). Effect of variety and acid washing method on extraction yield and quality of sunflower head pectin. Food Chem., 83(1), 43-47.

[4] Ralet, O. (2011). Pectin Content of lime and lemon peel as extracted by nitric acid. J. Food Sci., 43(1), 72-73.

[5] Aina, V. O., Mustapha, M. B., Mamman, O. A., Amina, Z., Hauwa, U. M. S., Yagana, B. A. (2012). Extraction and characterization of pectin from peels of lemon (Citrus limon), grape fruit (Citrus paradise) and sweet orange (Citrus sinensis). Br. J. Pharmacol., 3(6), 259-262.

[6] حسینی،  س. س.؛ خدائیان چگنی، ف.؛ برازنده، س. (1395). استخراج و مقایسه خصوصیات فیزیکوشیمیایی پکتین پوست خربزه آناناسی، طالبی سمسوری و گالیا به کمک امواج مایکروویو. مجله علوم تغذیه و صنایع غذایی ایران، سال 11، شماره 4، ص  80-71.

[7] Chan, C. H., Yusoff, R., Ngoh, G. C., Kung, F. W. L. (2011). Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A., 1218(37), 6213-6225.

[8] Fishman, M. L. and Chau, H. K. (2000). Extraction of pectin by microwave heating under pressure. U. S. patent No., 6,143,337. Washington, DC: U. S. patent and Trademark Office.

[9] فتحی، ب.؛ مقصودلو، ی.؛ قربانی، م خمیری، م. (1391). تاثیر pH، ﺩﻣﺎ ﻭ ﺯﻣﺎﻥ ﺍﺳﺘﺨﺮﺍﺝ ﺍﺳﯿﺪﯼ ﺑﺮ ﺑﺎﺯﺩﻩ ﻭ ﺧﺼﻮﺻﯿﺎﺕ ﭘﮑﺘﯿﻦ ﺣﺎﺻﻞ ﺍﺯ ﺿﺎﯾﻌﺎﺕ ﮐﺪﻭﯼ آجیلی. نشریه پژوهشهای صنایع غذایی، جلد 22، شماره 4، ص 475-465.

[10] مسیبی ، و.؛ امام جمعه، ز.؛ طباطبائی یزدی، ف. (1396). بهینه سازی شرایط استخراج پکتین با روش غرقابی از تفاله شاه توت. فصلنامه علوم و صنایع غذایی، شماره62، دوره 14، ص 356-341.

 [11] Santos, J. D. G., Espeleta, A. F., Branco, A., de Assis, S. A. (2013). Aqueous extraction of pectin from sisal waste. Carbohydrate Polym., 92(2), 1997-2001.

[12] Dalev, P. G. and Simeonova, L. S. (1995). Emulsifying properties of protein-pectin complexes and their use in oil-containing foodstuffs. J. Sci. Food Agr., 68(2), 203-206.

[13] Yapo, B. M. (2011). Pectic substances: from simple pectic polysaccharides to complex pectins-A new hypothetical model. Carbohydrate Polym., 86(2), 373-385.

[14] Chen, Y., Zhang, J. G., UN, H. J., Wei, J. (2014). Pectin from abelmoschusesculentus: optimization of extraction and rheological properties. ‎Int. J. Biol. Macromolec., 70, 498-505.

[15] Ma, S., Yu, S., Zheng, X., Wang, X., Bao, Q.-D., Guo, X. (2013). Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydrate polym., 98(1), 750-753.

[16] Methacanon, P., Krongsin, J., Gamonpilas, C. (2014). Pomelo (Citrus maxima) pectin: Effects of extraction parameters and its properties. Food hydrocoll., 35, 383-391.

[17] Vinogradov, E. V., Brade, L., Brade, H., Holst, O. (2003). Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from acinetobacter baumannii strain 24. Carbohydr. Res., 338(23), 2751-2756.

[18] Ye, C. L., Jiang, C. J. (2011). Optimization of extraction process of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohydrate Polym., 84(1), 495-502.

[19] Braga, M. E. M., Moreschi, S. R. M., Meireles, M. A. A. (2006). Effects of supercritical fluid extraction on curcuma longa L. and zingiber officinale R. starches. Carbohydrate polym., 63(3), 340-346

[20] Li, W., Cui, S. W. and Kakuda, Y. (2006). Extraction, Fractionation, Structural and physical characterization of wheat β-D-glucans. Carbohydrate polym., 63(3), 408-416.

[21] Masmoudi, M., Besbes, S., Chaabouni, M., Robert,C., Paquot, M., Blecker, C., Attia,H. (2008). Optimization of pectin extraction fromlemon by-productwith acidified date juice using response surface methodology. Carbohydrate polym., 74(2), 185-192.

 [22] Chaharbaghi, E., Khodaiyan, F., Hosseini, S.S. (2017). Optimization of pectin extraction from pistachio green hull as a new source. Carbohydr polym., 173, 107-113.

 [23] Maran , J.P., Sivakumar, V., Thirugnanasambandham, K., Sridhar, R. (2014). Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydrate polym., 101, 786-791.

[24] Hosseini,S.S., khodaiyan, F., Yarmand, M.S. (2016). Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate polym, 140, 59–65.

[25] Jafari, F., Khodaiyan, H., Kiani, S. Hosseini, S.S. (2016). Pectin from carrot pomace: optimization of extraction and physicochemical properties, Carbohydrate polym., 157, 1315-1322.

[26] Garna, H., Mabon, N., Robert, C., Cornet, C., Nott, K., Legeros, H., Wathelet, B. and Paquot, M. (2007). Effect of extraction conditions on the yield and purity of apple pomace pectin precipitated but not wasned by alcohol. J. Food Sci, 72(1), C001-C009.

[27] Yapo, B. M. (2009). Lemon juice improves the extractability and quality characteristics of pectin from yellow passion fruit by products as compared with commercial citric acid extractant. Bioresour Technol., 100(12), 3147-3151.

[28] Emaga, T. H., Ronkart, S. N., Robert, C., Wathelet, B., Paquot, M. (2008). Characterization of pectins extracted from banana peels under different conditions using an experimental design. Food Chem., 108(2), 436-471.

[29] Yapo, B., Robert, C., Etienne, I., Wathelet, B., Paquot, M. (2007). Effect of Extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem., 100(4), 1356-1364.

[30] Scabio, A., Fertinani, H. C., Schemin, M. H., Petkowicz, C. O., Carneiro, E. B., Nogueira, A., Wosiachi G. (2007). A model for pectin extraction from apple pomace. Braz. J. food technol., 10(4), 259-265.

 [31] Zhemerichkin, D. A. and Ptitchkina, N. M. (2006). The composition and properties of pumpkin and sugar beet pectins. Food hydrocoll., 9(2), 147-149.

[32] Hosseini, S.S., Khodaiyan, F., Yarmand, M.S. (2016). Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. Int J Biol Macromol., 82, 920–926.

[33] Raji, Z., Khodaiyan, F., Rezaei, K., Kiani, H., Hosseini, S.S. (2017). Extraction optimization and physicochemical properties of pectinfrom melon peel. Int J Biol Macromol., 98, 709–716.

[34] Dickinson, M. (1992). Pectin extraction from citrus peel by polygalacturonase produced on whey. Bioresour Technol., 47(1), 25-28.

[35] Iglesias, M.I., Lozano, J.E. (2004). Extraction and characterization of sunflower pectin. J. Food Eng., 62(3), 215-223.

[36] Panouille, I. N., Kirtchev, N. A., Kratchanov, C. (2006). Kinetic model of pectin extraction. Carbohydrate polym., 11(3), 193-204.