بررسی کمیت و انتشار نایسین استفاده شده در فیلم زئین ذرت بر کاهش جمعیت میکروکوکوس لوتئوس

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار، گروه صنایع غذایی، دانشگاه آزاد اسلامی واحد ور امین - پیشوا

چکیده

نایسین یک باکتریوسین است که در سیستم‌های غذایی، فعالیت خود را به‌دلیل اتصال آن به پروتئین و چربی از دست می‌دهد بنابراین با تهیه یک فیلم بر پایه زیست پلیمر می‌توان فعالیت آن را بهبود بخشید. هدف از این پژوهش بررسی فعالیت ضد‌میکروبی و کمیت انتشار غلظت‌های مختلف نایسین 100، 200 و 300 میلی‌گرم، از فیلم زئین ذرت 4 درصد در بافر فسفات و ارزیابی فعالیت ضد‌میکروبی و کمیت نایسین انتشار یافته از غلظت‌های مختلف فیلم زئین ذرت (4، 6، 8 و 10 درصد) در بافر فسفات بود. فعالیت ضد‌میکروبی نایسین انتشار یافته از فیلم‌های زئین ذرت با بررسی مهار رشد میکروکوکوس لوتئوس در سطح محیط کشت انجام شد و کمیت آن نیز به روش کروماتوگرافی مایع با عملکرد بالا ارزیابی گردید. در مرحله آخر مدل‌سازی حرکتی انتشار نایسین به روش مدل‌سازی وایبل تجربی انجام شد. مطابق با نتایج، فعالیت ضد‌میکروبی نایسین با تشکیل هاله عدم رشد در آگار تایید گردید. کمیت انتشار نایسین از فیلم‌ زئین ذرت 4 درصد با افزایش غلظت نایسین به شکل معنی‌داری افزوده شد. با افزایش غلظت فیلم زئین ذرت از 4 به 10 درصد (وزنی/حجمی)، میزان انتشار نایسین از فیلم زئین ذرت 10 درصد به‌دلیل افزایش پیچ خوردگی در فیلم و رهایش کندتر نایسین 4 برابر کاهش یافت. مدل‌سازی حرکتی انتشار از فیلم‌ها مشابه رفتار فیک با پیش‌بینی عالی (95/0<2R) را نشان داد. بنابراین با استفاده از پوشش خوراکی زئین ذرت حاوی ترکیب ضد‌میکریی نایسین می‌توان زمان نگه‌داری و کیفیت مواد غذایی را افزایش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Quantity and Diffusion of Nisin Used in Corn Zein Film to Depopulate Micrococcus Luteus

نویسنده [English]

  • Leila Nateghi
Assistant professor, Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
چکیده [English]

Nisin is a bacteriocin that loses its activity due to binding to the protein, fat and other in the food systems. By preparing a film based on the biopolymer can improve its performance. The objective of this research was to investigate the antimicrobial activity and quantity diffusion of different concentrations of nisin (100, 200 and 300 mg) from 4 percent corn zein film in phosphate buffer and evaluation of antimicrobial activity and quantity diffusion of nisin from different concentrations of corn zein films (2, 4, 6, 8 and 10) in the phosphate buffer. The antimicrobial activity of nisin diffusion from corn zein films was performed with evaluation of growth inhibition of Micrococcus luteus in culture media and its quantity was evaluated with high-performance liquid chromatography method. In the final stage modeling of nisin release kinetics performed via empirical Weibull model. According to results the antimicrobial activity of nisin was confirmed by formation of growth inhibition halo in agar. Quantity diffusion of nisin from 4 percent corn zein film significantly increased with increasing concentration of nisin. With increasing the concentrations of corn zein from 4 to 10% (W/V) the nisin diffusion from corn zein film 10%, four times decreased which related to increase kink in film and slower release of nisin. Kinetic modeling diffusion from films showed similar behavior Fick with excellent prediction (R2 >0.95). Therefore by using the corn zein edible coating containing nicin antimicrobial composition can increase the shelf life and quality of food.

کلیدواژه‌ها [English]

  • Biodegradable biopolymer
  • Corn zein
  • Micrococcus luteus
[1] Ghanbarzadeh, B., Musavi, M., Oromiehie, A.R., Rezayi, K., Razmi Rad, E., Milani, J. (2007). Effect of plasticizing sugars on water vapor permeability, surface energy and micro-structure properties of zein films. LWT-Food Sci. Technol., 40, 1191-1197.

[2] Ghanbarzadeh, B., Oromiehie, A. R. (2008). Biodegradable biocomposite films based on whey protein and zein: Barrier, mechanical properties and AFM analysis. Int. J. Biol. Macromol., 43(2), 209-215.

[3] Ghanbarzadeh, B., Oromiehie, A.R., Musavi, M., D-Jomeh, Z.E., Rad, E.R., Milani, J. (2006). Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films. Food Res. Int., 39(8), 882-890.

[4] Han, J. H. (2000). Antimicrobial food packaging. Food Technol., 54(3), 56 - 65.

[5] Guerra, N.P., Macias, C.L., Agrasar, A.T., Castro, L.P. (2005). Development of a bioactive packaging cellophane using nisaplin as biopreservative agent. Lett. Appl. Microbiol., 40(2), 106 -110.

[6] Zactiti, E. M., Kieckbusch, T. G. (2006). Potassium sorbate permeability in biodegradable alginate films: Effect of the antimicrobial agent concentration and crosslinking degree. J. Food. Eng., 77(3), 462 - 467.

[7] Anderson, T.J., Lamsal, B.P. (2011). Zein extraction from corn, corn products, and coproducts and modifications for various applications: A Review. Cereal Chem., 88(2), 159 -173.

[8] Krochta, J.M. (1997). Edible protein films and coatings. In: Damodaran, S., Paraf, A. editors. Food proteins and their applications. New York, Marcel Dekker. 529-550.

[9] Savich, I.M. (1991). Hydrophobic properties of maize zein. Khim. Prir. Soedin (translated in English). 1,105-108.

[10] Hoffmann, K.L., Han, I.Y., Dawson, P.L. (2001). Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. J. Food prot., 64(6), 885-889.

[11] Cleveland, J., Montville, T.J., Nes, I.F., Chikindas, M.L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol., 71(1), 1-20.

[12] Nes, I.F., Diep, D.B., Havarstein, L.S., Brurberg, M.B., Eijsink, V., Holo, H. (1996). Biosynthesis of   bacteriocins in lactic acid bacteria. Antonie van leeuwenhoek., 70, 113-128.

[13] Davies, E.A., Bevis, H.E., Potter, R., Harris, J., Williams, G.C., Delves-Broughton, J. (1998). Research note: The effect of pH on the stability of nisin solution during autoclaving. Lett. Appl. Microbiol., 27(3), 186-187.

[14] Van de Ven, F.J.M., Van den Hooven, H.W., Konings, R.N.H., Hilbers, C.W. (1991). NMR Studies of lantibiotics: the structure of nisin in aqueous solution. Eur. J. Biochem., 202(3), 1181-1188.

[15] Sebti, I., Blanc, D., Carnet-Ripoche, A., Saurel, R., Coma, V. (2004). Experimental study and modeling of nisin diffusion in agarose gels. J. Food. Eng., 63(2), 185-190.

[16] O‘Leary, W.M., Wilkinson, S.G. In: Ratledge, C., Wilkinson, S.G. (Eds). (1988). Microbial lipids, Vol.1, academic press, New York, 117-201.

[17] Breukink, E. (1997). The c-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry., 36(23), 6968-6976.

[18] Cha, D.S., Cooksey, K., Chinnan, M.S., Park, H.J. (2003). Release of nisin from various heat-pressed and cast films. LWT-Food Sci. Technol., 36(2), 209-213.

[19] Sanjurjo, K., Flores, S., Gerschenson, L., Jagus, R. (2006). Study of the performance of nisin supported in edible films. Food Res. Int., 39(6), 749-754.

 [20] Teerakarn, A., Hirt, D.E., Acton, J.C., Rieck, J.R., Dawson, P.L. (2002). Nisin diffusion in protein films: Effects of film type and temperature. J. Food Sci., 67(8), 3019-3025.

[21] Fan, L.T., Singh, S.K. (1989). Controlled release: a quantitative treatment. Berlin, Germany, Springer Verlag, pp 211- 230.

[22] Madigan M., Martinko, J. (editors). (2005). Brock biology of microorganisms (11th ed). Prentice hall. ISBN 0-13-144329-1.

[23] Baron, J. K., Summer, S. S. (1993). Antimicrobial containing edible films as an inhibitory system to control microbial growth of meat products. J. Food prot., 56, 9-16.

[24] Ozdemir, M. (1999). Antimicrobial releasing edible whey protein films and coatings. Ph.D. Dissertation, Purdue University, West Lafayette, IN, pp 20-30.

[25] Lawton, J.W. (2004). Plasticizers for zein: their effect on tensile properties and water absorption of zein films. Cereal Chem., 81(1), 1-5.

[26] Dawson, P.L., Hirt, D.E., Rieck, J.R., Acton, J.C., Sotthibandhu, A. (2003). Nisin release from films is affected by both protein type and film-forming method. Food Res. Int., 36(9-10), 959-968.

[27] Lai, H.-M., Padua, G.W. (1997). Properties and microstructure of plasticized zein films. Cereal Chem., 74(6), 771-775.

[28] Pongtharangkul, T.; Demirci, A. (2004). Evaluation of agar diffusion bioassay for nisin quantification. Appl. Microbiol. Biotechnol., 65(3), 268-272.

[29] Liu, W., Hanssen, J.N. (1990). Some physical and chemical properties of nisin, a small protein antibiotic produced by Lactococcus lactis. Appl. Environ Microbiol., 56(8), 2551-2558.

[30] Buonocore, G.G., Del Nobile, M.A., Panizza, A., Corbo, M.R., Nicolais, L. (2003). A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications. J. Control. Release., 90(1), 97-107.

[31] Cussler, E.L. (1997). Diffusion: mass transfer in fluid systems. Cambridge university press, England, pp 45-50.

[32] Crank, J. (1975). The mathematics of diffusion. 2nd ed. Oxford University Press, England, pp 28-36.

[33] Papadopoulou, V.V., Kosmidis, K.K., Vlachou, M.M., Macheras, P.P. (2006). On the use of the weibull function for the discernment of drug release mechanisms. ‎Int. J. Pharm., 309(1-2), 44-50.

[34] Marabi, A., Livings, S., Jacobson, M., Saguy, I.S. (2003). Normalized weibull distribution for modeling rehydration of food particulates. Eur Food Res Technol., 217(4), 311-318.

[35] Pfeiffer, P., Orben, C. (1997). Determination of nisin in wine after solid phase extraction and high performance liquid chromatography. Dtsch Lebensmitt Rundsch., 93, 47-49.

[36] Grower, J.L., Cooksey, K., Getty, K. (2004). Release of nisin from methylcellulose-hydroxypropyl methylcellulose film formed on low-density polyethylene film. J. Food Sci., 69(4), FMS107-FMS111.

[37] Hedayati rad, F., Sharifan, A., Khodayian Chegini, F., Hosini, E. (2013).  Antimicrobial activity of Pullulan film incorporated with Artemisia sieberi essential oil. J. Fasa Univ. Med. Sci., 3(2), 130-135.

[38] Boroumand, A., Hamedi, M., Emamjome, Z., Razavi, S.H. (2013). Investigation on the antimicrobial effect of caseinate edible film containing the essential oil of Zataria multiflora. Iran J. Nutr Sci Food Technol., 41(10), 13-21.

[39] Sedaght, N., Mohammad-Hosseini, M., Khoshnoudi-Nia, S., Habibi, M.B., Koocheki, A. (2015). Antimicrobial Properties of CMC-based edible films incorporated with coriander and citrus lemon essential oils on the shelf-life of resh lamb-meat at refrigerator temperature. Iran J. Nutr Sci Food Technol., 9(4), 53-62.

[40] Arrieta, M.P., Peltzer, M.A., Garrigós, M.C., Jiménez A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J. Food Eng., 114(4), 486–94.

[41] Ghanbarzadeh, B., Pezeshki Najafabadi, A., Almasi, H. (2011). Antimicrobial edible films for food packaging. Iran J Nutr Sci Food Technol., 8(31), 123-135.

[42] Chandrasekar, V., Coupland, J.N., Anantheswaran, R.C. (2016). Kinetics of nisin from chitosan alginate complex films. J. Food Sci., 81(10), 2503-2510.  

[43] Wang, H., Zhang, R., Zhang, H., Jiang, S., Liu, H., Sun, M., Jiang, S. (2015). Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly (vinyl alcohol). Carbohydr. Polym., 127, 64-71.

[44] Cha, D.S., Choi, J.H., Chinnan, M.S., Park, H.J. (2002). Antimicrobial films based on Na-alginate- and κ-carrageenan. Lebensm. Wiss. Technol, 35, 715-719.

[45] Seydim, A.C. and Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with thyme, rosemary and garlic essential oils. Food Res Int., 39(5), 639-644.

[46] Nguyen, V.T., Gidley M.J., Dykes, G. (2008). A potential of nisin-containing bacterials cellulose film to inhibit listeria monocytogenes on processed meats. Food Microbiol., 25(3), 471-478.

[47] Economou, T., Pournis, N., Ntzimani, A., Savvaidis, I.N. (2009). Nisin-EDTA treatments and modified atmosphere packaging to increase fresh chicken meat shelf-life. Food Chem., 114(4), 1470-1476.

[48] Neetoo, H., Ye, M., Chen, H., Joerger, R.D., Hicks, D., Hoover, D.G. (2008). Use of nisin coated plastic films to control Listeria monocytogenes on vacuum packaged cold smoked salmon. Int. J. Food Microbiol., 122(1-2), 8-15.

[49] Cao-Hoang L., Chaine A., Grégoire L, Waché Y. (2010). Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiol., 27(7), 940-944.

[50] Hosseini, S.M.H., Razavi, S.H., Mousavi, S.M.A. (2009). Studies on physical, mechanical, antibacterial and microstructural properties of chitosan edible films containing thyme and cinnamon essential oils. EJFPP., 1(2), 47-68.

[51] Miltz, J., Rosen-Doody, V. (1985). Migration of styrene monomer from polystyrene packaging materials into food simulants. ‎J. Food Process. Preserv., 8(3-4), 151-161.

[52] Ozdemir, M., Floros, J.D. (2001). Analysis and modeling of potassium sorbate diffusion through edible whey protein films. J. Food Eng., 47(1), 149-155.

[53] Zilberman, M., Sofer, M. (2006). A mathematical model for predicting controlled release of bioactive agents from composite fiber structures. ‎J. Biomed. Mater. Res., 80A(3), 679-686.

 [54] Giannakopoulos, A., Guilbert, S. (1986). Determination of sorbic acid diffusivity in model food gels. Int. J. Food Sci Tech., 21(4), 339-353.

[55] Sun, Z., Wang, C.H. (1996). Quasielastic light scattering from semidilute ternary polymer solutions of polystyrene and poly (methyl methacrylate) in benzene. Macromolecules, 29(6), 2011-2018.

[56] Cutter, C.N. (2002). Microbial control by packaging: A review.  Crit. Rev. Food Sci. Nutr., 42(2), 151-161.

[57] Carnet Ripoche, A., Chollet, E., Peyrol, E., Sebti, I. (2006). Evaluation of nisin diffusion in a polysaccharide gel: Influence of agarose and fatty content. Innov. Food Sci. Emerg. Technol., 7(1-2), 107-111.

[58] Teerakarn, A., Hirt, D.E., Acton, J.C., Rieck, J.R., Dawson, P.L. (2002). Nisin diffusion in protein films: Effects of film type and temperature. J. Food Sci., 67(8), 3019-3025.