استفاده از باکتریوفاژها، یک رهیافت جدید بیولوژیک در سلامت مواد غذایی

نوع مقاله : مقاله مروری

نویسندگان

گروه زیست شناسی، دانشکده علوم پایه، دانشگاه مراغه، مراغه، ایران

چکیده

امنیت غذایی امروزه به عنوان یکی از مسایل بسیارمهم و موثر در دنیا بخصوص در کشورهای در حال توسعه مطرح می باشد که پرداختن به این موضوع و ارائه راهکارهایی جهت امنیت پایدار مواد غذایی از اهمیت بسزایی برخوردار است. در این میان فاژها به دلیل دارابودن خصوصیات منحصر به فرد، به عنوان یک گزینه دارای پتانسیل بالا برای مبارزه با عفونت های حاصل از آلودگیهای مواد غذایی مطرح شده اند. پتانسیل بالای ضدباکتریایی فاژها در زمینه مواد غذایی مختلف از جمله شیر، گوشت، پنیر، سبزیجات و میوه های تازه که به صورت خام و فرآوری نشده مصرف میشوند در مطالعات مختلف گزارش شده است. باکتریوفاژ ها هیچ تاثیر منفی و مخربی بر مواد غذایی نداشته و نیز توانسته اند به حفظ تازگی و طعم غذا کمک کنند که این مورد بخصوص تامین کننده نیاز و انتظار مصرف کنندگان به ویژه در زمینه حفظ کیفیت مواد غذایی با حداقل فرآوری می باشد. همچنین به دلیل مقاومت بالای فاژها در مقابل تغییرات دمایی و pH، استفاده از آن ها در سه بخش اصلی صنایع غذایی یعنی تولید اولیه، ضدعفونی در حین تولید و نیز به عنوان نگهدارنده های زیستی میسر می باشد. علاوه بر این، محصولات تجاری فاژی مانند Listshield، ListexP100 و همچنین مخلوطهای فاژی دیگر نیز برای مقابله با عوامل باکتریایی بیماریزا در مواد غذایی اثرات امیدوارکننده ای را در کاهش بار میکروبی مواد غذایی نشان داده اند . استفاده از باکتریوفاژ ها به عنوان یک راهکار بیولوژیک موثر در کنترل زیستی، میتواند به افزایش ایمنی مواد غذایی و کاهش خطرات ناشی از آلودگی های میکروبی کمک کند که در نهایت منجر به سلامت عمومی خواهد شد. با این حال انجام تحقیقات بیشتر جهت بهره برداری گسترده از این رهیافت بیولوژیک در صنایع غذایی اهمیت بسزایی دارد.

چکیده تصویری

استفاده از باکتریوفاژها، یک رهیافت جدید بیولوژیک در سلامت مواد غذایی

تازه های تحقیق

  • باکتریوفاژها به دلیل خصوصیات منحصربه فرد و پتانسیل بالای ضدباکتریایی، در حوزه های مختلف از جمله صنایع غذایی مورد توجه قرار گرفته اند.
  • به دلیل تمایل مصرف کنندگان مواد غذایی جهت استفاده از نگهدارنده های طبیعی ، باکتریوفاژها می توانند جایگزین مناسبی در این زمینه باشد.
  • با توجه به امکان آلودگی بیشتر مواد غذایی با فرآوری پایین، باکتریوفاژها نقش مهمی در سلامت این تولیدات غذایی ایفا می کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The use of bacteriophages, a new biological approach to food safety

نویسندگان [English]

  • Raheleh Majdani
  • Samira Ghaemi
  • Mitra Alizadeh
Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
چکیده [English]

Food security is one of the most important and effective issues in the world today, especially in developing countries, and addressing this issue and providing solutions for sustainable food security is of great importance. In this regard, phages, due to their unique characteristics, have been proposed as a high-potential option for combating infections resulting from food contamination. The high antibacterial potential of phages in the field of various foods, including milk, meat, cheese, vegetables, and fresh fruits that are consumed raw and unprocessed, has been reported in various studies. Bacteriophages have no negative or destructive effects on foods and have also been able to help maintain the freshness and taste of food, which is especially satisfying the needs and expectations of consumers, especially in the field of maintaining the quality of food with minimal processing. Also, due to the high resistance of phages to temperature and pH changes, their use is possible in three main sectors of the food industry, namely primary production, disinfection during production, and as biological preservatives. In addition, commercial phage products such as Listshield, ListexP100, and other phage mixtures have also shown promising effects in reducing the microbial load of food to combat pathogenic bacterial agents. The use of bacteriophages as an effective biological strategy in biological control can help increase food safety and reduce the risks of microbial contamination, which will ultimately lead to public health. However, further research is essential for the widespread use of this biological approach in the food industry.

کلیدواژه‌ها [English]

  • biological control
  • bacteriophage
  • food
  • biosafety
[1] Murray, K., Wu, F., Shi, J., Jun Xue, S., & Warriner, K. (2017). Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Qual Saf., 1(4), 289–301. DOI: 10.1093/fqsafe/fyx027
[2] Rashida, H., Sean, B., Douglas, N., Carlota, M., Alida, S., Jessica, L, Rotstein, D., Schlater, L., Freiman, J., Douris, A., Simmons, M., Donovan, D., Henderson, J., Tewell, M., Snyder, K., Oni, O., Von Stein, D., Dassie, K. . . . Gieraltowski, L. (2019). Multistate outbreak of Salmonella infections linked to raw Turkey products- United States, 2017–2019. MMWR., 68(46), 1045–1049. DOI: 10.15585/mmwr.mm6846a1
[3] Yu, H., Elbediwi, M., Zhou, X., Shuai, H., Lou, X., Wang, H., Li, Y., & Yue, M. (2020). Epidemiological and genomic characterization of Campylobacter jejuni isolates from a foodborne outbreak at Hangzhou, China. Int J Mol Sci., 21(8), 3001. DOI: 10.3390/ijms21083001.
[4] Bensid A., El Abed N., ꓼ Houicher A., M. Regenstein J., Özogul F. (2020). Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food – a review. Crit Rev Food Sci Nutr., 62, 2985-3001. DOI:10.1080/10408398.2020.1862046
[5] Van Loo, E. J., Ricke S. C., O’Bryan C. A., Johnson M. G. (2012). Historical and current perspectives in organic meat production. Org. Meat Prod. Process., 1–9. New York, NY: Wiley Scientific/IFT. DOI: 10.1002/9781118229088.ch1
[6] Ricke, S. C., Wideman M. E. (2013). Cranberries and their potential application against foodborne pathogens. OA Alternative Medicine, 1(2),17. DOI: 10.13172/2052-7845-1-2-714
[7] Corbo, M. R., Bevilacqua, A., Campaniello, D., et al. (2009). Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches–a review. IJFST., 44, 223–241. DOI: 10.1111/j.1365-2621.2008.01883.x
[8] Del Nobile, M. A., Lucera, A., Costa, C., et al. (2012). Food applications of natural antimicrobial compounds. Front microbiol., 3, 287. DOI: 10.3389/fmicb.2012.00287
[9] Moye, Z. D., Woolston, J., Sulakvelidze, A. (2018). Bacteriophage applications for food production and processing. Viruses, 10(4), 205. DOI: 10.3390/v10040205
[10] Endersen L., CoffeyA. (2020). The use of bacteriophages for food safety. Curr Opin Food Sci., 36,1–8. DOI:10.1016/j.cofs.2020.10.006
[11] Sillankorva, S. M., Oliveira, H., Azeredo, J. (2012). Bacteriophages and their role in food safety. Int J Microbiol., 2012, 1–13. DOI: 10.1155/2012/863945
[12] Bhardwaj, N., Bhardwaj, S. K., Deep, A., Dahiya, S., Kapoor, S. (2015). Lytic bacteriophages as biocontrol agents of foodborne pathogens. AJAVA., 10(11), 708–723. DOI: 10.3923/ajava.2015.708.723
[13] O’Sullivan, L., Bolton, D., McAuliffe, O., Coffey, A. (2019). Bacteriophages in food applications: From foe to friend. Annu Rev Food Sci Technol., 10(1), 151–172. DOI: 10.1146/annurev-food-032818-121747
[14] Greer, G. G. (2005). Bacteriophage control of foodborne bacteria. JFP., 68(5), 1102–1111. DOI: 10.4315/0362-028x-68.5.1102
[15] Sarno, D Pezzutto, Rossi M, Liebana E, Rizzi V. (2021). A Review of Significant European Foodborne Outbreaks in the Last Decade. JFP., 84(12). DOI:10.4315/JFP-21-096
[16] Scallan, E. Hoekstra, RM. Angulo, FJ. Tauxe, RV. Widdowson, MA. Roy, SL. Jones, JJ. Griffin, PM. (2011). Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis.,17(1),7-15. DOI: 10.3201/EID1701.P11101
[17] Żaczek, B. Weber-Dąbrowska, A. Górski, (2015) Phages in the global fruit and vegetable industry. J Appl Microbiol, 118, 3. DOI: 10.1111/jam.12700
[18] Islam, F., Saeed, F., Afzaal, M., Ahmad, A., Hussain, M., Khalid, M. A., Saewan, S. A., & Khashroum, A. O. (2022). Applications of green technologies-based approaches for food safety enhancement: A comprehensive review. Food Sci Nutr., 10(9), 2855–2867. DOI: 10.1002/fsn3.2915
[19] Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014). Post harvest treatments of fresh produce. Philos Trans R Soc A., 372 (2017). DOI: 10.1098/RSTA.2013.0309
[20] McCallin, S., Sarker, S. A., Barretto, C., Sultana, S., Berger, B., Huq, S., Krause, L., Bibiloni, R., Schmitt, B., Reuteler, G., & Reuteler, G. (2013). Safety analysis of a Russian phage cocktail: From MetaGenomic analysis to oral application in healthy human subjects. Virol J., 443(2),187–196.  DOI: 10.1016/j.virol.2013.05.022
[21] Wagh, R., Ruchir Priyadarshi, V., Jong-Whan, R. (2023). Novel Bacteriophage-Based Food Packaging: An Innovative Food Safety Approach. Coatings, 13, 609. DOI: 10.3390/coatings13030609
[22] Kamiński, B., & Paczesny, J. (2024). Bacteriophage challenges in industrial processes: A historical unveiling and future outlook. Pathog., 13(2), 152. DOI: 10.3390/pathogens13020152
[23] Kochhar, R. (2020). The virus in the rivers: Histories and antibiotic afterlives of the bacteriophage at the Sangam in Allahabad. Notes Rec. R. Soc. J. Hist. Sci., 74, 625–651. DOI: 10.1098/rsnr.2020.0019
[24] Suvarna, V., Nair, A., Mallya, R., Khan, T., & Omri, A. (2022). Antimicrobial nanomaterials for food packaging. Antibiotics (Basel) [Abbrev.: Antibiotics (Basel)], 11(5), 729.  DOI:10.3390/antibiotics11060729
[25] Gordillo Altamirano, F.L., Barr, J.J. (2019). Phage therapy in the postantibiotic era. Clin. Microbiol. Rev., 32, e00066-18. DOI: 10.1128/CMR.00066-18
[26] Kasimanickam, V., Kasimanickam, M., & Kasimanickam, R. (2021). Antibiotics use in food animal production: Escalation of antimicrobial resistance: Where are we now in combating AMR? Med. Sci., 9(1), 14. DOI: 10.3390/medsci9010014
 [27] Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. (2021). The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr. Opin. Biotechnol., 68, 60–71. DOI:10.1016/j.copbio.2020.08.016
[28] Azam, A. H., Tan, X.-E., Veeranarayanan, S., Kiga, K., & Cui, L. (2021). Bacteriophage technology and modern medicine. Antibiot. DOI: 10.3390/antibiotics10080999
[29] Zolnikov, T.R. (2019). Global health in action against a superbug. Am. J. Public Health, 109, 523–524. DOI: 10.2105/AJPH.2019.304980
[30] Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Appl. Sci., 12(5). DOI: 10.3390/app12042202
[31] Jagtap, N.S., Wagh, R.V., Chatli, M.K., Malav, O.P., Kumar, P., Mehta, N. (2020). Chevon meat storage stability infused with response surface methodology optimized origanum vulgare leaf extracts. Agric. Res., 9, 663–674. DOI: 10.1007/s40003-020-00464-5
[32] Hameed, F., Bandral, J. D., Gupta, N., Nayik, G. A., Sood, M., & Rahman, R. (2022). Use of bacteriophages as a target specific therapy against food-borne pathogens in food industry – a review: Bacteriophage. J. Microbiol. Biotechnol. Food Sci., 11(6), e2949. DOI: 10.15414/jmbfs.2949
[33] Agriopoulou, S; Stamatelopoulou, E; Sachadyn-Król, M.; Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: quality and safety aspects. Mdpi., 8, 952.  DOI: 10.3390/microorganisms8060952
[34] Zhang, Z.H.; Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. (2019). Non-thermal technologies and its current and future application in the food industry. IJFST., 54, 1–13. DOI: 10.1111/ijfs.13903
[35] Gientka, I.; Wójcicki, M.; ˙Zuwalski, A.W.; Bła ˙zejak, S. (2021). Use of phage cocktail for improving the overall microbiological quality of sprouts—Two methods of application. Appl Microbiol., 1, 289–303. DOI: 10.3390/applmicrobiol1020021
[36] Leverentz, B., W. S. Conway, M. J. Camp, W. J. Janisiewicz, A. Abuladze, M. Yang, R. Saftner, and A. Sulakvelidze. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol., 69, 4519–4526. DOI: 10.1128/AEM.69.8.4519-4526.2003
[37] Leverentz, B., W. S. Conway, W. Janisiewicz, and M. J. Camp. (2004). Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot., 67, 1682– 1686. DOI: 10.4315/0362-028x-67.8.1682
[38] Aprea, G.; Zocchi, L.; Di Fabio, M.; De Santis, S.; Prencipe, V.A.; Migliorati, G. (2018) The applications of bacteriophages and their lysins as biocontrol agents against the foodborne pathogens Listeria monocytogenes and Campylobacter spp.: An updated look. Vet Ital., 54, 293–303. DOI: 10.12834/VetIt.311.1215.2
[39] Soni, K.A., Nannapaneni, R., Hagens, S. (2010). Reduction of listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog Dis., 7(4), 427–434. DOI: 10.1089/fpd.2009.0432
[40] Guenther S, Huwyler D, Richard S, Loessner MJ. (2009). Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready‑to‑eat foods. Appl Environ Microbiol., 75,93–100. DOI: 10.1128/AEM.01711-08
[41] Zhou, C., Zhu, M., Wang, Y., Yang, Z., Ye, M., Wu, L., Bao, H., Pang, M., Zhou, Y., Wang, R., Sun, L., Wang, H., Zheng, C., & Zhang, H. (2020). Broad host range phage vB-LmoM-SH3-3 reduces the risk of Listeria contamination in two types of ready-to-eat food. Food Control., 108, 106830. DOI: 10.1016/j.foodcont.2019.106830
[42] Figueiredo, A.C.L.; Almeida, R.C.C. (2017). Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Braz J Microbiol., 48, 724–729. DOI: 10.1016/j.bjm.2017.02.010
[43] Duc, H. M., Son, H. M., Yi, H. P. S., Sato, J., Ngan, P. H., Masuda, Y. Honjoh, K.-I., & Miyamoto, T. (2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157: H7 in different food matrices. Int. Food Res., 131, 108977. DOI: 10.1016/j.foodres.2020.108977
[44] Kim, J., H., Jung, S. J., Mizan, M. F. R., Park, S. H., & Ha, S. (2020). Characterization of Salmonella spp. specific bacteriophages and their biocontrol application in chicken breast meat. J Food Sci., 85(3), 526–534.  DOI: 10.1111/1750-3841.15042
[45] Shebs-Maurine, E. L., Giotto, F. M., Laidler, S. T., & de Mello, A. S. (2021). Effects of bacteriophages and peroxyacetic acid applications on beef contaminated with Salmonella during different grinding stages. Meat Sci., 173, 108407. DOI: 10.1016/j.meatsci.2020.108407
[46] Abdelsattar AS, Safwat A, Nofal R, Elsayed A, Makky S, El-Shibiny A, (2021). Isolation and chaaracterization of bacteriophage zcse6 against salmonella spp: Phage application in milk. Biologics, 1,164–176. DOI: 10.3390/biologics1020010
[47] Zhang, X., Niu, Y. D., Nan, Y., Stanford, K., Holley, R., McAllister, T., & Narváez-Bravo, C. (2019). SalmoFresh™ effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds. Int. J Food Microbiol., 305, 108250. DOI:10.1016/j.ijfoodmicro.2019.108250
[48] Sharma, C., Dhakal, J., Nannapaneni, R. (2015). Efficacy of lytic bacteriophage preparation in reducing Salmonella in vitro, on turkey breast cutlets, and on ground Turkey. JFP., 78(7), 1357–1362. DOI: 10.4315/0362-028X.JFP-14-585
[49] Wong, C. W., Delaquis, P., Goodridge, L., Lévesque, R. C., Fong, K., & Wang, S. (2020). Inactivation of Salmonella enterica on post-harvest cantaloupe and lettuce by a lytic bacteriophage cocktail. CRFS., 2, 25–32. DOI:10.1016/j.crfs.2019.11.004
[50] Gencay, Y. E., Ayaz, N. D., Copuroglu, G., & Erol, I. (2016). Biocontrol of Shiga toxigenic Escherichia coli O157: H7 in Turkish raw meatball by bacteriophage. J. Food Saf., 36(1), 120–131. DOI: 10.1111/jfs.12219
[51] Carter, C. D., Parks, A., Abuladze, T., Li, M., Woolston, J., Magnone, J., Senecal, A., Kropinski, A. M., & Sulakvelidze, A. (2012). Bacteriophage cocktail significantly reduces Escherichia coli O157: H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage, 2(3), 178–185. DOI: 10.4161/bact.22825
[52] Ding, Y., Nan, Y., Qiu, Y., Niu, D., Stanford, K., Holley, R., Narváez-Bravo, C., & McAllister, T. (2023). Use of a phage cocktail to reduce the numbers of seven Escherichia coli strains belonging to different STEC serogroups applied to fresh produce and seeds. J. Food Saf., 43(4), e13044. DOI: 10.1111/jfs.13044
[53] Duc, H. M., Son, H. M., Ngan, P. H., Sato, J., Masuda, Y., Honjoh, K.-i., & Miyamoto, T. (2020). Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus. Appl Microbiol Biotechnol., 104(11), 5145–5158. DOI: 10.1007/s00253-020-10581-4
[54] Orquera, S., Gölz, G., Hertwig, S., Hammerl, J., Sparborth, D., Joldic, A., & Alter, T. (2012). Control of Campylobacter spp. And Yersinia enterocolitica by virulent bacteriophages. IJBR., 6(1), 273. DOI: 10.4172/1747-0862.1000049
[55] Umaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., et al. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci Technol., 98, 10–24. DOI: 10.1016/j.tifs.2020.01.032
[56] Liu, S., Quek, S.-Y., & Huang, K. (2024). Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. npj Science of Food, 7, 12574–12598. DOI: 10.1080/10408398.2023.2254837
[57] Torres-Acosta, M. A., Clavijo, V., Vaglio, C., González-Barrios, A. F., Vives-Flórez, M. J., & Rito-Palomares, M. (2019). Economic evaluation of the development of a phage therapy product for the control of Salmonella in poultry. Biotechnol. Prog., 35(5), e2852. DOI: 10.1002/btpr.2852
[58] Liu, A., Liu, Y., Peng, L., Cai, X., Shen, L., Duan, M., Ning, Y., Liu, S., Li, C., Liu, Y., et al. (2020). Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on lettuce and tofu. LWT, 118, 108791. DOI: 10.1016/j.lwt.2019.108791
[59] Clavijo, V., Baquero, D., Hernandez, S., Farfan, J. C., Arias, J., Arévalo, A., Donado-Godoy, P., & Vives-Flores, M. (2019). Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poult. Sci., 98(10), 5054–5063. DOI: 10.3382/ps/pez251
[60] Pecetta, S., & Rappuoli, R. (2021). Bacteriophages, a multi-tool to fight infectious disease. Med, 2(2), 209–210. Doi: 10.1016/j.medj.2021.01.007
[61] i, J., Zhao, F., Zhan, W., Li, Z., Zou, L., & Zhao, Q. (2022). Challenges for the application of bacteriophages as effective antibacterial agents in the food industry. J. Sci. Food Agric., 102(2), 461–471. DOI: 10.1002/jsfa.11505
[62] Esmael, A., Azab, E., Gobouri, A. A., Nasr-Eldin, M. A., Moustafa, M. M. A., Mohamed, S. A., Badr, O. A. M., & Abdelatty, A. M. (2021). Isolation and characterization of two lytic bacteriophages infecting a multi-drug resistant Salmonella Typhimurium and their efficacy to combat salmonellosis in ready-to-use foods. Microorganisms, 9(2), 423. DOI: 10.3390/microorganisms9020423
[63] Prashantha, S. T., Yadav, J., Sunilkumar, V. P., & HP, N. P. (2023). The variability and mechanisms of infection by gram-positive, plant associated bacteria. Int. Year Millet, 51.
[64] Komora, N., Maciel, C., Amaral, R. A., Fernandes, R., Castro, S. M., Saraiva, J. A., & Teixeira, P. (2021). Innovative hurdle system towards Listeria monocytogenes inactivation in a fermented meat sausage model - high pressure processing assisted by bacteriophage P100 and bacteriocinogenic Pediococcus acidilactici. Food Res. Int., 148, 110628. DOI:10.1016/j.foodres.2021.110628
[65] Srivastava, K. R., Awasthi, S., Mishra, P. K., & Srivastava, P. K. (2020). In M. N. V. Prasad & A. Grobelak (Eds.), Waterborne pathogens (pp. 237–277). Banaras Hindu University.
[66] Kuek, M., McLean, S. K., & Palombo, E. A. (2022). Application of bacteriophages in food production and their potential as biocontrol agents in the organic farming industry. Biol. Control, 165, 104817. DOI: 10.1016/j.biocontrol.2021.104817
[67] Paczesny, J., Wdowiak, M., & Ochirbat, E. (2022). In Nanotechnology for infectious diseases (pp. 439–473). Springer
[68] Aliakbar Ahovan, Z.,  Hashemi, LM De Plan, A., Gholipourmalekabadi, M., Seifalian, A. (2020). Bacteriophage based biosensors: Trends, outcomes and challenges. Nanomaterials, 10(3), 501. DOI: 10.3390/nano10030501
[69] Wang, J., Kanach, A., Han, R., & Applegate, B. (2021). Application of bacteriophage in rapid detection of Escherichia coli in foods. Curr. Opin. Food Sci., 39, 43–50. DOI: 10.1016/j.cofs.2020.12.015
[70] Lai, W. C. B., Chen, X., Ho, M. K. Y., Xia, J., & Leung, S. S. Y. (2020). Bacteriophage-derived endolysins to target gram-negative bacteria. Int. J. Pharm., 589, 119833. DOI: 10.1016/j.ijpharm.2020.119833
[71] Huang, Z., Zhang, C., Wang, J., Zhang, F., & Xu, X. (2021). Phages and their lysins: Toolkits in the battle against foodborne pathogens in the post-antibiotic era. Compr. Rev. Food Sci. Food Saf., 20(4), 3319–3343. DOI: 10.1111/1541-4337.12757
[72] Ranveer, S. A., Dasriya, V., Ahmad, M. F., Dhillon, H. S., Samtiya, M., Shama, E., Anand, T., Dhewa, T., Chaudhary, V., Chaudhary, P., Behare, P., Ram, C., Puniya, D. V., Khedkar, G. D., Raposo, A., Han, H., & Puniya, A. K. (2024). Positive and negative aspects of bacteriophages and their immense role in the food chain. npj Science of Food, 8(1), 1. Doi: 10.1038/s41538-023-00245-8
[73] Islam, M. S., Zhou, Y., Liang, L., Nime, I., Liu, K., Yan, T., Wang, X., & Li, J. (2019). Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses, 11(9), 841. DOI: 10.3390/v11090841
[74] Cristobal-Cueto, P., García-Quintanilla, A., Esteban, J., García-Quintanilla, M. (2021). Phages in Food Industry Biocontrol and Bioremediation. Antibiotics, 10(7), 786. DOI: 10.3390/antibiotics10070786
[75] Fernández, L., Duarte, A. C., Rodríguez, A., & García, P. (2021). The relationship between the phageome and human health: Are bacteriophages beneficial or harmful microbes? Benef. Microbes, 12(2), 107–120. DOI: 10.3920/BM2020.0132
[76] Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., & Abedon, S. T. (2010). Phage therapy in clinical practice: Treatment of human infections. urr. Pharm. Biotechnol, 11(1), 69–86. DOI: 10.2174/138920110790725401
[77] Strathdee, S. A., Hatfull, G. F., Mutalik, V. K., & Schooley, R. T. (2023). Phage therapy: From biological mechanisms to future directions. Cell, 186(1), 17–31. DOI: 10.1016/j.cell.2022.11.017
[78] Principi, N., Silvestri, E., & Esposito, S. (2019). Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol., 10, 513. DOI: 10.3389/fphar.2019.00513
 
[79] Żaczek, M., et al. (2022). A thorough synthesis of phage therapy unit activity in Poland—its history, milestones and international recognition. Viruses, 14(6), 1170. DOI: 10.3390/v14061170
[80] Naureen, Z., et al. (2020). Comparison between American and European legislation in the therapeutical and alimentary bacteriophage usage. Acta Biomed., 91. DOI: 10.23750/abm.v91i13-S.10815
[81] Jones, J. D., Trippett, C., Suleman, M., Clokie, M. R., & Clark, J. R. (2023). The future of clinical phage therapy in the United Kingdom. Viruses, 15(3), 721. DOI: 10.3390/v15030721
[82] Lin, R. C., Fabijan, A. P., Attwood, L., & Iredell, J. (2019). State of the regulatory affair: Regulation of phage therapy in Australia.
[83] Johri, P. (2023). Antimicrobial resistance and phage therapy in India. Microbiologist, Retrieved from.
دوره 12، شماره 4
مرداد 1404
صفحه 373-394
  • تاریخ دریافت: 08 تیر 1404
  • تاریخ بازنگری: 14 مرداد 1404
  • تاریخ پذیرش: 20 مرداد 1404
  • تاریخ اولین انتشار: 20 مرداد 1404
  • تاریخ انتشار: 01 مرداد 1404