ارزیابی اثرات اسانس درمنه خزری (Artemisia annua L) بر خواص فیزیکومکانیکی، ساختاری و ضدمیکروبی فیلم خوراکی بر پایه ژلاتین ماهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فرآوری محصولات شیلاتی، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

2 موسسه علوم و تکنولوژی مواد غذایی و تغذیه (ICTAN-CSIC)، مادرید، اسپانیا

چکیده

در مطالعه حاضر، فیلم‌ ضدمیکروبی جدید بر پایه ژلاتین ماهی (FG)/کربوکسی‌متیل‌سلولز (CMC)/صمغ فارسی (PG) حاوی اسانس درمنه خزری (AEO) در سه سطح مختلف (5/0، 1 و 5/1%، وزنی/حجمی) از طریق روش قالب‌گیری ساخته شد و ویژگی‌های فیزیکومکانیکی، ساختاری و ضدمیکروبی فیلم‌های حاصله مورد ارزیابی قرار گرفت. نتایج نشان داد با افزایش محتوای AEO، WVP فیلم‌ها که در محدوده 51/746-4/0 g mm/kPa h m2 بود و نیز حلالیت (FS) فیلم‌ها افزایش یافت، در حالی‌که میزان جذب آب (SR) کاهش یافت. نتایج سنجش ویژگی‌های مکانیکی نشان داد که ادغام AEO باعث افزایش معنی‌دار انعطاف‌پذیری (EAB) فیلم‌ها (05/0P<) و کاهش استحکام کششی (TS) شد. طیف‌سنجی FT-IR تشکیل پیوندهای هیدروژنی بین‌مولکولی را بین گروه‌های عاملی اجزای پلیمری و AEO نشان داد که به نوبه خود منجر به بهبود پایداری حرارتی و خواص مکانیکی فیلم‌های سه‌جزئی گردید. تجزیه و تحلیل پراش اشعه ایکس (XRD) نیز امتزاج‌پذیری بین اجزای تشکیل‌دهنده فیلم را نشان داد. تصویربرداری میکروسکوپ الکترونی روبشی (SEM) مؤید آن بود که فیلم‌های سه‌جزئی حاوی AEO دارای ریزساختار پیوسته، صاف و همگن می‌باشند که نشان‌دهنده سازگاری بین اجزا می‌باشد. به‌علاوه، فیلم‌های سه‌جزئی حاوی بیشترین غلظت AEO (5/1%) فعالیت ضدباکتریایی قابل قبولی را نسبت به باکتری‌های گرم‌مثبت استافیلوکوکوس اورئوس و لیستریا مونوسیتوژنز و باکتری‌های گرم‌منفی سالمونلا انتریتیدیس و اشرشیاکلی نشان دادند. یافته‌های این مطالعه نشان می‌دهد فیلم‌های سه‌جزئی FG/CMC/PG حاویAEO می‌توانند به عنوان مواد بسته‌بندی امیدوارکننده برای محصولات غذایی استفاده شوند.

چکیده تصویری

ارزیابی اثرات اسانس درمنه خزری (Artemisia annua L) بر خواص فیزیکومکانیکی، ساختاری و ضدمیکروبی فیلم خوراکی بر پایه ژلاتین ماهی

تازه های تحقیق

  • فیلم­های ضدمیکروبی بر پایه ژلاتین ماهی/کربوکسی­متیل سلولز/صمغ فارسی حاوی اسانس درمنه خزری تهیه گردید.
  • افزودن AEO باعث افزایش حلالیت (FS) و نفوذپذیری فیلم­ها در برابر بخار آب (WVP) گردید.
  • ادغام AEO باعث افزایش معنی‌دار انعطاف­پذیری (EAB) و کاهش استحکام کششی (TS) فیلم­ها شد.
  • تجزیه و تحلیل پراش اشعه ایکس (XRD) امتزاج­پذیری بین اجزای تشکیل­دهنده فیلم را نشان داد.
  • فیلم‌های سه­جزئی FG/CMC/PG حاوی AEO فعالیت ضدمیکروبی قابل قبولی در مقابل چهار عامل بیماری­زای غذازاد نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the effects of Artemisia annua L. essential oil on the physicomechanical, structural, and antimicrobial properties of edible film based on fish gelatin

نویسندگان [English]

  • Maryam allahyari 1
  • Seyed Fakhreddin Hosseini 1
  • Maria Carmen Gómez-Guillén 2
1 Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
2 Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN, CSIC), Calle José Antonio Novais, 10, 28040 Madrid, Spain
چکیده [English]

In the present study, a novel antimicrobial film based on fish gelatin (FG)/carboxymethylcellulose (CMC)/Persian gum (PG) containing Artemisia annua (AEO) essential oil at three different levels (0.5, 1 and 1.5%, w/v) was fabricated by casting method and the physicomechanical, structural and antimicrobial properties of the resulting films were evaluated. The results showed that with increasing AEO content, the WVP of the films, which was in the range of 0.746-4.51 g mm/kPa h m2, and the solubility (FS) of the films increased, while the water absorption rate (SR) decreased. The results of the mechanical properties showed that the incorporation of AEO significantly increased the flexibility (EAB) of the films (P<0.05) and decreased the tensile strength (TS). FT-IR spectroscopy revealed the formation of intermolecular hydrogen bonds between the functional groups of the polymer components and AEO, which in turn led to improved thermal stability and mechanical properties of the ternary films. X-ray diffraction (XRD) analysis also showed miscibility between the film components. Scanning electron microscopy (SEM) imaging confirmed that the ternary films containing AEO had a continuous, smooth, and homogeneous microstructure, indicating compatibility between the components. In addition, the ternary films containing the highest concentration of AEO (1.5%) showed acceptable antibacterial activity against the gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes and the gram-negative bacteria Salmonella enteritidis and Escherichia coli. The findings of this study indicate that ternary FG/CMC/PG films containing AEO can be used as promising packaging materials for food products.

کلیدواژه‌ها [English]

  • Antimicrobial films
  • Fish gelatin
  • Carboxymethyl cellulose
  • Persian gum
  • Artemisia annua L. essential oil
[1] Marsh, K., & Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. J. Food Sci. 72(3), 39-55.
[2] Clodoveo, M. L., Muraglia, M., Fino, V., Curci, F., Fracchiolla, G., & Corbo, F. F. R. (2021). Overview on innovative packaging methods aimed to increase the shelf-life of cook-chill foods. Foods, 10(9), 2086.
[3] Yan, M. R., Hsieh, S., & Ricacho, N. (2022). Innovative food packaging, food quality and safety, and consumer perspectives. Processes, 10(4), 747.
[4] European Commission. (2009). EU Guidance to the Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into the contact with food (version 1.0). Available from: https://food.ec.europa.eu/food-safety/chemical-safety/food-contact-materials_en. Accessed 2017 October 24.
[5] Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2021). trans-Cinnamaldehyde-doped quadripartite biopolymeric films: Rheological behavior of film-forming solutions and biofunctional performance of films. Food Hydrocoll. 112, 106339.
[6] Wen, P., Zhu, D. H., Wu, H., Zong, M. H., Jing, Y. R., & Han, S. Y. (2016). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 59, 366-376.
[7] Rabie, M., Sefidkon, F., & Jalili, A. (2002). The essential oil composition of Artemisia annua in five locations of Gilan province. Pajouhesh-va-Sazandegi. In Natural Resources, 55, 20-23.
[8] Isacchi, B., Bergonzi, M. C., Grazioso, M., Righeschi, C., Pietretti, A., Severini, C., & Bilia, A. R. (2012). Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur. J. Pharm. Biopharm. 80(3), 528-534.
[9] Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem. 136(3-4), 1490-1495.
[10] Rhim, J. W., Hong, S. I., Park, H. M. & Ng, P. K. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem. 54(16), 5814-5822.
[11] Imran, M., El-Fahmy, S., Revol-Junelles, A. M., & Desobry, S. (2010). Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr. Polym. 81(2), 219-225.
[12] Abbasi, S. (2017). Challenges towards characterization and applications of a novel hydrocolloid: Persian gum. Curr. Opin. Colloid Interface Sci. 28, 37-45.
[13] Saha, A., Tyagi, S., Gupta, R. K., & Tyagi, Y. K. (2017). Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol. 37(8), 959-973.
[14] Kadkhodaee, R., & Mahfouzi, M. (2022). Chemistry and Food Applications of Persian Gum. In Gums, Resins and Latexes of Plant Origin: Chemistry, Biological Activities and Uses (pp. 1-26). Cham: Springer International Publishing.
[15] Najafian, N., Aarabi, A., & Nezamzadeh-Ejhieh, A. (2022). Evaluation of physicomechanical properties of gluten-based film incorporated with Persian gum and Guar gum. Int. J. Biol. Macromol. 223, 1257-1267.
[16] Ruan, C., Zhang, Y., Wang, J., Sun, Y., Gao, X., Xiong, G., & Liang, J. (2019). Preparation and antioxidant activity of sodium alginate and carboxymethyl cellulose edible films with epigallocatechin gallate. Int. J. Biol. Macromol. 134, 1038-1044.
[17] ASTM. (2005). Standard test method for water vapor transmission of materials (E96-05). In Annual Book of ASTM Standards. American Society for Testing Materials, Philadelphia, PA.
[18] ASTM (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards. Designation D882-02. Philadelphia: American Society for Testing Materials.
[19] Javidi, Z., Hosseini, S.F. and Rezaei, M., 2016. Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT, 72, 251-260.
[20] Zhou, J. J., Wang, S. Y., & Gunasekaran, S. (2009). Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci. 74(7), 50-56.
[21] Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll. 28(1), 189-199.
[22] Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 26(1), 9-16.
[23] Cao, T. L., & Song, K. B. (2019). Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll. 97, 105198.
[24] Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. J. Food Eng. 110(2), 232-239.
[25] Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem. 134(3), 1571-1579.
[26] Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind Crops Prod., 67, 403-413.
[27] Fernandes, G. D. J. C., Campelo, P. H., de Abreu Figueiredo, J., Barbosa de Souza, H. J., Peixoto Joele, M. R. S., Yoshida, M. I., & Henriques Lourenço, L. D. F. (2022). Effect of polyvinyl alcohol and carboxymethylcellulose on the technological properties of fish gelatin films. Sci. Rep. 12(1), 10497.
[28] Gómez-Estaca, J., De Lacey, A. L., López-Caballero, M. E., Gómez-Guillén, M. D. C., & Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 27(7), 889-896.
[29] Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M. L., & Marques, A. (2013). Hake proteins edible films incorporated with essential oils: physical, mechanical, antioxidant and antibacterial properties. Food Hydrocoll. 30(1), 224-231.
[30] Kavoosi, G., Dadfar, S. M. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 78, 244-250.
[31] Walid, Y., Malgorzata, N., Katarzyna, R., Piotr, B., Ewa, O. L., Izabela, B., ... & Moufida, S. T. (2022). Effect of rosemary essential oil and ethanol extract on physicochemical and antibacterial properties of optimized gelatin–chitosan film using mixture design. J. Food Process. Preserv. 46(1), e16059.
[32] Narasagoudr, S. S., Hegde, V. G., Vanjeri, V. N., Chougale, R. B., & Masti, S. P. (2020). Ethyl vanillin incorporated chitosan/poly (vinyl alcohol) active films for food packaging applications. Carbohydr. Polym. 236, 116049.
[33] Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int. J. Biol. Macromol. 99, 746-753.
[34] Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym. 84(1), 477-483.
[35] He, B., Wang, W., Song, Y., Ou, Y., & Zhu, J. (2020). Structural and physical properties of carboxymethyl cellulose/gelatin films functionalized with antioxidant of bamboo leaves. Int. J. Biol. Macromol., 164, 1649-1656.
[36] Sanchez-Gonzalez, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocoll. 23(8), 2102-2109.
[37] Kavoosi, G., Rahmatollahi, A., Dadfar, S. M. M., & Purfard, A. M. (2014). Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT, 57(2), 556-561.
[38] Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J. Food Eng. 109(3), 513-519.
[39] Ahmad, H. N., Yong, Y., Wang, S., Munawar, N., & Zhu, J. (2024). Development of novel carboxymethyl cellulose/gelatin-based edible films with pomegranate peel extract as antibacterial/antioxidant agents for beef preservation. Food Chem. 443, 138511.
[40] Haghighi, H., Biard, S., Bigi, F., De Leo, R., Bedin, E., Pfeifer, F., ... & Pulvirenti, A. (2019). Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocoll. 95, 33-42.
[41] Arora, A., & Padua, G. W. (2010). Nanocomposites in food packaging. J. Food Sci. 75(1), 43-49.
[42] Nguyen, Q. D., Tran, T. T. V., Nguyen, N. N., Nguyen, T. P., & Lien, T. N. (2023). Preparation of gelatin/carboxymethyl cellulose/guar gum edible films enriched with methanolic extracts from shallot wastes and its application in the microbiological control of raw beef. Food Packag. Shelf Life. 37, 101091.
[43] Pan, R., Xuan, W., Chen, J., Dong, S., Jin, H., Wang, X., ... & Luo, J. (2018). Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy, 45, 193-202.
[44] Ma, Q., Du, L., Yang, Y., & Wang, L. (2017). Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocoll. 63, 677-684.
[45] Sun, C., Wang, Y. S., Luan, Q. Y., & Chen, H. H. (2024). Preparation and properties of edible active films of gelatin/carboxymethyl cellulose loaded with resveratrol. Int. J. Biol. Macromol. 283, 137897.
[46] Pérez-Córdoba, L. J., Norton, I. T., Batchelor, H. K., Gkatzionis, K., Spyropoulos, F., & Sobral, P. J. (2018). Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocoll. 79, 544-559.
[47] Kan, J., Liu, J., Yong, H., Liu, Y., Qin, Y., & Liu, J. (2019). Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int. J. Biol. Macromol. 140, 384-392.
[48] Kanimozhi, K., Basha, S. K., & Kumari, V. S. (2016). Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater. Sci. Eng. C. 61, 484-491.
[49] Tongnuanchan, P., Benjakul, S., Prodpran, T., Pisuchpen, S., & Osako, K. (2016). Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocoll. 56, 93-107.
[50] Kang, J. H., & Song, K. B. (2019). Characterization of Job's tears (Coix lachryma-jobi L.) starch films incorporated with clove bud essential oil and their antioxidant effects on pork belly during storage. LWT, 111, 711-718.
[51] Ibrahim, M. M., Koschella, A., Kadry, G., & Heinze, T. (2013). Evaluation of cellulose and carboxymethyl cellulose/poly (vinyl alcohol) membranes. Carbohydr. Polym. 95(1), 414-420.
[52] Martucci, J. F., & Ruseckaite, R. A. (2015). Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polym. Degrad. Stab. 116, 36-44.
[53] Balaguer, M. P., Gómez‐Estaca, J., Gavara, R., & Hernandez‐Munoz, P. (2011). Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J. Agric. Food Chem. 59, 6689-6695.
[54] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94(3), 223-253.
[55] Ćavar, S., Maksimović, M., Vidic, D., & Parić, A. (2012). Chemical composition and antioxidant and antimicrobial activity of essential oil of Artemisia annua L. from Bosnia. Ind. Crop. Prod. 37(1), 479-485.
[56] Hashemi, S. M. B., & Khodaei, D. (2021). Basil seed gum edible films incorporated with Artemisia sieberi and Achillea santolina essential oils: Physical, antibacterial, and antioxidant properties. J. Food Process. Preserv. 45(7), e15645.