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Abstract 

Given the critical importance of egg quality for consumer health and the prevention of economic 

losses in the industry, identifying factors that help maintain or enhance quality is essential. This 

study aimed to investigate the effects of the number and exposure time of ultraviolet and infrared 

lamps on the quality characteristics of eggs using principal component analysis. A total of 56 

intact eggs were collected and subjected to pre-treatments with ultraviolet and infrared lamps, 

both with and without sunflower oil coating. Subsequently, quality parameters of the samples 

were measured, and the resulting data were evaluated using Principal Component Analysis. The 

Principal Component Analysis results indicated that the type and intensity of ultraviolet and 

infrared irradiation had distinct impacts on egg quality attributes. ultraviolet exposure produced 

more diverse patterns, whereas infrared exposure resulted in more uniform responses. Quality 

variables such as volume, density, crude protein, and total ash played the most significant roles 

in differentiating the treatments. Moreover, prolonged exposure time intensified differences 

between groups, highlighting Principal Component Analysis as an effective tool for identifying 

key factors influencing egg quality. 

Keywords: Egg, Ultraviolet, Physical and Chemical Properties, PCA Method 

 

Introduction 

Nowadays, the use of eggs as a complete nutritional package has become increasingly 

widespread, both directly and indirectly. Therefore, their quality holds significant importance 

[1]. The concept of quality in eggs is highly complex and encompasses various attributes, 

including egg size, shell color and integrity, shape, and internal quality characteristics [2]. 

Immediately after laying, the deterioration process of the egg characterized by chemical and 

nutritional changes begins, accompanied by the release of CO₂ and alterations in pH levels [3]. 

Furthermore, the deterioration of egg albumen during storage depends on storage conditions 

(temperature and relative humidity) as well as the characteristics of the eggshell [4]. The 

duration of storage is generally used as a key indicator for distinguishing between fresh eggs and 
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those suitable for consumption [5]. However, considering the points mentioned above, the 

number of days post-laying alone cannot be relied upon. Therefore, variable chemical indicators 

during storage are regarded as key determinants of egg freshness [6]. The egg industry 

worldwide is responsible for producing eggs with high internal and external quality, which is 

essential for its economic sustainability. Currently, egg quality issues impose significant costs on 

the industry. So, understanding the factors that influence both internal and external quality is of 

great importance. In light of these considerations, eggs must be evaluated in terms of both 

internal and external quality. In the past, various methods have been employed to assess the 

internal contents of eggs, which can generally be categorized into destructive and non-

destructive techniques [7]. One advantage of various destructive methods over non-destructive 

techniques is that measurements can be performed directly on the internal contents of the egg [8]. 

However, in this approach, eggs must be broken, which limits testing to a small number of 

samples. Moreover, destructive evaluation methods are time-consuming and require specialized 

sample preparation [9]. On the other hand, in non-destructive methods, attributes related to the 

albumen and yolk are measured in intact eggs. These assessments can be performed on the 

production line, in real time, and are applicable to all eggs [10]. Cedro et al. (2009) investigated 

the internal contents of eggs, analyzing the yolk and albumen separately, to examine the effect of 

storage duration on pH levels. The storage period was set at 44 days. Their results showed that 

with increasing storage time, the pH of both the yolk and albumen increased significantly [11]. 

In other studies in this field, the effect of storage time on the protein content of eggs was 

examined, and researchers concluded that prolonged storage leads to a decrease in egg protein 

content. In general, the evaluation of physical and chemical characteristics of agricultural 

products can be reflected by various indicators; however, comprehensive analysis of these 

dispersed indicators is challenging. Principal Component Analysis (PCA) is an analytical method 

that summarizes numerous variables into a few comprehensive components and explains the 

correlations among different variables, along with Pearson correlation analysis [12]. Ultimately, 

considering the critical importance of egg quality, examining the factors that contribute to its 

preservation or deterioration during storage is essential. Despite various studies conducted on 

egg quality assessment, a comprehensive analysis using PCA to evaluate the effects of different 

influencing factors has not yet been performed. Therefore, the objective of this study is to 

investigate the effects of the number and exposure time of UV and IR lamps on the qualitative 

attributes of eggs through principal component analysis. 

 

Materials and methods 

Samples preparation and treatment selection 

In this study, 56 healthy eggs were collected from an egg layer flock (Hyline W36 strain with 30 

weeks of egg) in a private company near the city of Gorgan, Golestan province on October 13, 

2018. The eggs produced were prepared with an average weight of 72 g and then transferred to 

Gorgan University of Agricultural Sciences and Natural Resources.and then transferred to 

Gorgan University Agricultural Sciences and Natural Resources, Gorgan, Iran. A total of 28 eggs 

were exposed to UV radiation and also another 28 eggs were subjected to IR radiation, next each 

group was divided into sunflower oil-smeared and non-smeared categories. The sunflower was 

used because of its positive effect on shelf life and eggs quality. The samples were stored for two 

days then the physical and mechanical properties were measured. 

 

Moisture measurement 
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After the egg contents were placed in an oven at 100°C for 24 h, the moisture content was 

measured by the weight loss method, according to Azadbakht et al., 2016. The egg contents were 

dried until a constant weight was achieved, indicating negligible further moisture loss, over a 24-hour 

period. 

 

Ultraviolet radiation method 

As shown in figure 1, the UV light was produced by an array of LEDs. The specifications for 

these LEDs were as follows: 3mm in diameter, a wavelength of 400 nm (within the UV-A 

spectrum) and an operating voltage of 3-4 volts. The light source was positioned parallel to the 

floor at a height of 40 cm above the samples. The entire circuit operated at 12 volts and 0.84 

amperes, and the UV radiation was applied over an area of 20×50 cm
2 

[14]. 

 
Figure 1. Schematic of the circuit and the Ultraviolet radiation method 

(1) Sample location; (2) lamp circuit; (3) radiation chamber 

 

Infrared radiation method 

In figure 2 the source of IR light and the egg radiation method are shown. In this method several 

IR LEDs are used, the specification of LEDs were 3 mm in diameter, 850 nm in wavelength and 

3.3-4 volts in voltage The distance of IR light source and samples was parallel to the floor in 

height of 40cm. The characteristics of the whole circuit were 12 volts, 0.84 amperes and the area 

of the use of IR radiation was 50×20 cm
2
 [15]. 

 
Figure 2. Schematic of the circuit and the Infrared radiation method 

(1) Sample location; (2) lamp circuit; (3) radiation chamber 

 

Quasi-static test 

The required failure force of eggshells under quasistatic loading was investigated in three cases 

of impregnated specimens without impurities in sunflower oil under the magnetic field and 

control. Quasi-static loading indicates sample resistance to failure, so the extracted data is 

suitable for investigating the effect of the IR and UV radiated and impurity on sunflower oil. 

For thin edge quasi-static testing was performed using an universal testing machine (Santam-

STM5 - SANTAM Engineering and Design Company, Tehran, Iran) device with a load of 500 N 

strain for the pressure test, the thin edge of a plastic jaw was considered with a surface of 3×15 

mm (Figure 3). In order to increase the accuracy of the measurement, the speed of the device 

when applying the pressure force was 0.33 mm/min, in the direction of the z-axis (Figure 4) and 

in three replications was performed, and as a result failure force of the eggshell was obtained. 

The direction of compressive force was chosen in the direction of the z-axis due to the high 

vulnerability of the egg. Loading was continued until the egg shell’s failure, and then the force-

extension diagram was drawn up by Instron and its data was extracted. The eggshell breaking 

force is determined by the force-deformation curve. So that in the shell breaking force, there is a 

large change in the force in the curve [16]. 

 
Figure 3. The egg quasi-static loading diagram 

(1) Force deformation machine; (2) the location of the egg 

 
Figure 4. Schematic form of the egg physical characteristics for various forces 

 

Principal component analysis 
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In this study, the collected data were analyzed using The Unscrambler X 10.4 (64-bit) software. 

Originally developed by Harald Martens and later enhanced by CAMO, this software is 

recognized as a specialized tool for multivariate data analysis. Its key features include data 

calibration, predictive modeling, and the implementation of advanced chemometric techniques. 

Principal component analysis was employed as one of the primary analytical methods to examine 

correlations among different variables, including broad-edge, thin-edge, and impact scores, as 

well as physical and chemical loadings. PCA transforms a set of correlated variables into a 

limited number of independent variables (principal components), allowing for dimensionality 

reduction and noise elimination. This method not only compresses data but also preserves the 

maximum variance, enabling a more accurate interpretation of the underlying data structure. As 

an unsupervised technique, PCA does not require the definition of a dependent variable, relying 

solely on intrinsic data relationships. This feature makes PCA particularly effective for 

exploratory studies and for identifying hidden patterns or natural groupings within datasets. Such 

analyses assist researchers in assessing inter-variable relationships with greater precision, 

ultimately leading to the development of more reliable and optimized models [17]. 

 

Results and Discussion 

Principal component analysis  

The collected data were analyzed using The Unscrambler X 10.4 (64-bit) chemometric software. 

The main strength of Unscrambler X lies in its ability to provide robust tools for the analysis of 

various types of multivariate data. It offers functionalities for data calibration and predictive 

modeling. Originally developed by Harald Martens and later enhanced by CAMO, the software 

supports principal component analysis, Partial least squares (PLS) regression, multivariate curve 

resolution, and other advanced analytical techniques. In this study, PCA was applied to examine 

the correlations between irradiation treatments, the number of lamps, and exposure time (scores) 

and the physical and chemical characteristics of the eggs (loadings). This method reduces a large 

set of interrelated variables into a smaller number of uncorrelated components while minimizing 

noise. Essentially, PCA serves as a data compression technique, transforming correlated 

variables into new, uncorrelated variables known as principal components. This process reduces 

the dimensionality of the feature space and is classified as an "unsupervised" method, meaning it 

does not require the definition of a dependent variable [17]. 

 

Ultraviolet radiation differences 

Figure 5 presents PCA used to assess differences resulting from UV irradiation based on the 

physical and chemical properties of the samples. It consists of two sections: A (scores plot) and 

B (correlation loadings l\plot). In section A, known as the scores plot, the positioning of the 

samples is displayed according to the two principal components, PC1 and PC2. The first 

component (PC1) explains the largest portion of the variance, while the second component (PC2) 

accounts for the next highest level of variation. Each sample group is labeled according to the 

UV intensity applied—UV20, UV40, and UV60—represented by different symbols and colors. 

The UV40 data show greater dispersion along both principal components compared to UV20 and 

UV60, indicating more diverse changes in physical and chemical properties under these 

conditions. Conversely, the UV20 samples are mostly concentrated on the right-hand side and in 

the positive region of PC1, suggesting distinct compositional characteristics compared to other 

groups. UV60 samples, compared with UV40, are more densely clustered and tend to align 

toward the positive region of PC1, implying higher similarity in their attributes. The Hotelling’s 
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T² ellipse illustrates the 95% confidence interval, with most points falling within the boundary, 

indicating an absence of significant outliers. Figure 5B shows the direction and strength of the 

correlation between each physical and chemical characteristic and the principal components. 

Each point represents a variable, and its position in the PC1–PC2 space indicates its contribution 

to explaining the variance in the dataset. For instance, Volume is located on the right side near 

the unit circle boundary, suggesting a strong correlation with PC1 and a key role in 

distinguishing between groups. Similarly, Crude protein and Sphericity are positioned in the 

positive PC1 region, though slightly inclined toward PC2, indicating partial association with both 

components. Crude fat also shows a positive correlation with PC1 but to a lesser extent than 

Volume. In contrast, Total Ash and Breaking Force are located in the negative regions of both 

PC1 and PC2, reflecting an opposite influence compared to variables such as Volume. 

Meanwhile, pH and Density are positioned near the center, indicating a relatively smaller 

contribution to overall variance compared to other traits. Comparing plots A and B reveals that 

the distribution of samples in the scores plot (A) directly corresponds to the positioning of 

physical and chemical variables in the correlation loadings plot (B). For instance, because 

Volume lies in the positive PC1 region, groups positioned there (e.g., most UV60 samples) likely 

exhibit higher Volume values. Conversely, groups in the negative PC1 region, such as UV20, are 

likely associated with higher Total Ash content or related attributes. Overall, the PCA effectively 

distinguishes between UV irradiation groups based on multiple quality parameters. The UV40 

group exhibits the highest internal variability, possibly reflecting an optimal or more sensitive 

response at this irradiation level. Meanwhile, UV20 and UV60 display distinct patterns along the 

negative and positive PC1 regions, respectively, driven by variations in traits such as Volume, 

Crude Protein, and Total Ash. These findings provide valuable insights into the effects of UV 

intensity and support optimization of irradiation conditions to achieve desirable physicochemical 

properties in eggs. 

 
Figure 5. Graph (Scores) from Principal Component Analysis (PCA) to separate the number of UV lamps based on physical and 

chemical properties 

 

Infrared radiation differences  

 
Figure 6. Graph (scores) from principal component analysis (PCA) for the number of IR lamp separations based on physical and 

chemical properties 

 

Infrared and Ultraviolet radiation differences  

According to Figure 6A, the first principal component (PC1) accounts for 100% of the variance, 

capturing all variations present in the dataset. This proportion indicates that the primary 

separation and differentiation of samples are entirely driven by PC1. In other words, most 

physical and chemical characteristics influenced by IR irradiation exhibit changes that are 

predominantly aligned along PC1. The scores plot illustrates the positioning of samples in the 

two-dimensional space defined by the principal components. IR20 samples are mainly located on 

the positive side of PC1, suggesting higher values for characteristics positively associated with 

this axis. The IR60 group is also concentrated in the positive PC1 region but displays tighter 

clustering, indicating greater similarity within this group and a stronger effect of high-intensity 

IR exposure. IR40 samples, however, are more dispersed between the two groups, showing the 

highest internal variability—some samples align closely with IR20, while others approach IR60. 

This pattern reflects a transitional or intermediate state of characteristics under moderate IR 

exposure. The loadings plot displays the relationship between physicochemical variables and 
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principal components. Volume shows the highest positive correlation with PC1, playing a 

significant role in differentiating the IR60 group. Crude protein and Sphericity also align with 

the positive PC1 region, contributing to the separation of samples exposed to higher IR levels. 

Conversely, Total Ash and Breaking Force are positioned in the negative PC1 or negative PC2 

regions, placing them closer to the IR20 group. pH and Density appear near the center, indicating 

a smaller influence on overall group differentiation. Combining both plots demonstrates that IR 

intensity has a clear impact on the pattern of physicochemical characteristics. PC1 serves as the 

primary axis of separation, reflecting major variations such as increased volume and sphericity at 

higher irradiation levels (IR60) and increased total ash content at lower irradiation levels (IR20). 

IR40 occupies an intermediate position, with greater dispersion indicating a transitional stage in 

sample response to IR treatment. Overall, this PCA analysis not only reveals distinct group 

separations but also identifies the key variables responsible for these differences, enabling a 

deeper scientific interpretation of the relationship between IR intensity and structural–chemical 

changes in eggs. 

In the PCA analysis, the contribution of each principal component to the total variance was first 

examined. Results indicated that PC1 alone accounted for the largest share of variance (100% of 

the significant variance). This finding suggests that the main differences among samples can be 

represented along a single dimension, with PC1 providing a highly accurate depiction of these 

variations. In Figure 7A, samples subjected to IR and UV treatments are clearly separated, 

forming two distinct clusters. The close proximity of points within each cluster indicates good 

repeatability and high similarity among samples within the same treatment group. Since the 

horizontal axis (PC1) explains nearly all variance, the observed separation is largely attributed to 

the variables represented by this component. Figure 7B shows that variables such as Volume, 

Density, and Breaking Resistance have the highest loadings on PC1, making them the most 

influential in differentiating between treatments. Most variables exhibit similar orientations and 

high correlations with one another, suggesting that they may change simultaneously under the 

influence of irradiation type. The PCA results revealed that the effects of IR and UV irradiation 

on the physicochemical properties of the samples are clearly distinct, with these differences 

being primarily explained by PC1. Physical attributes, such as volume and density, play the most 

significant roles in this separation, whereas chemical variables contribute to a lesser extent. 

These findings provide a valuable basis for focusing on key traits in future studies. 

 
Figure 7. Scores from Principal Component Analysis (PCA) to separate the number of IR UV lamps - based on physical and chemical 

properties 

 

Time Radiation Differences  

The variance analysis of the components revealed that PC1 alone explained 100% of the total 

variance, while other components contributed negligibly. This result indicates that nearly all 

variations between IR-T1 and UV-T1 samples are concentrated along a single principal 

dimension, allowing for a precise interpretation of differences based solely on PC1. In Figure 

8A, samples subjected to IR-T1 and UV-T1 treatments are clearly separated, forming two 

distinct clusters. UV-T1 samples (blue squares) are closely grouped, displaying a compact 

clustering pattern that suggests greater homogeneity in response to ultraviolet irradiation. In 

contrast, IR-T1 samples (red circles) exhibit greater dispersion, indicating higher variability in 

response to infrared exposure. The considerable distance between the centers of the two clusters 

highlights a fundamental difference between the effects of these two types of irradiation on 

sample properties. Figure 8B illustrates that most variables are concentrated within a specific 
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region and show strong intercorrelation. Volume, density, and breaking force exhibit the highest 

loadings on PC1, making them the key factors driving treatment separation. Other variables, such 

as Crude Fat, crude protein, starch, and total ash, are positioned further from the cluster center, 

reflecting a more moderate or treatment-specific influence. The similar orientation of all 

variables within the same half-plane indicates that their changes are aligned and likely occur 

simultaneously with variations in irradiation type. PCA results at T1 demonstrate that the effects 

of IR and UV irradiation on samples differ significantly, with these differences being almost 

entirely explained by PC1. The more compact clustering of UV-T1 indicates greater consistency 

and uniformity under UV treatment, while the wider spread of IR-T1 reflects a higher degree of 

variability in response to IR exposure. Physical variables such as volume, density, and breaking 

force play the primary roles in distinguishing the two treatments and may serve as key indicators 

for future studies. 

In Figures 8C and 5D, principal component variance analysis revealed that PC1 alone accounted 

for 100% of the total variance, while the remaining components contributed negligibly. This 

indicates that nearly all differences between IR-T2 and UV-T2 samples are captured along a 

single principal dimension (PC1), enabling the interpretation to be primarily based on this 

component. In Figure 8C, IR-T2 and UV-T2 samples are clearly separated, forming two distinct 

clusters. IR-T2 samples (red circles) exhibit a more compact and closely grouped cluster, 

indicating greater uniformity in response to infrared irradiation. In contrast, UV-T2 samples 

(blue squares) display greater dispersion, suggesting higher variability in response to ultraviolet 

exposure. The considerable distance between the centers of the two clusters highlights a 

fundamental difference in the effects of these two irradiation types at stage T2. Figure 8D shows 

that most variables are concentrated within a specific region and display strong intercorrelation. 

Variables such as Volume, Density, Cooking Force, and Cooking Time have the highest loadings 

on PC1 and play a key role in distinguishing between the two treatments. Variables such as 

Crude Fat and Total Ash are positioned slightly further from the cluster center, indicating a more 

moderate or treatment-specific role. The similar orientation of all variables within the positive 

half-plane of PC1 suggests that their variations are aligned and likely influenced by similar 

irradiation effects. At stage T2, PCA results demonstrate that the effects of IR and UV irradiation 

on sample properties are substantially different, with these differences fully explained by PC1. 

Infrared irradiation induces a more uniform and consistent response, whereas ultraviolet 

irradiation results in greater variability among sample characteristics. Physical and functional 

attributes such as Volume, Density, and cooking parameters play a decisive role in this 

differentiation and can be considered key indicators for assessing irradiation effects at this stage. 

In Figures 8E and 5F, principal component variance analysis revealed that PC1 alone accounted 

for the entire variance in the dataset. This indicates that all observed differences between IR-T3 

and UV-T3 samples are concentrated along a single principal dimension (PC1), making its 

analysis sufficient for interpreting the results. In Figure 8E, IR-T3 samples (red circles) are 

located in the upper-right region, while UV-T3 samples (blue squares) are positioned in the 

lower-left region, indicating a complete contrast in their PC1 and PC2 values. The IR-T3 cluster 

is more compact, reflecting a high level of uniformity in response to infrared irradiation, whereas 

the UV-T3 cluster shows greater dispersion, suggesting higher variability in response to 

ultraviolet exposure. The substantial distance between the centers of the two clusters highlights a 

fundamental difference in the sample properties. Figure 8F further illustrates that the Volume 

variable exhibits the highest positive loading on PC1, making it a key factor in distinguishing the 

IR-T3 group. Conversely, Total Ash displays the highest negative loading and is more closely 
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associated with the UV-T3 group. Other variables, including Crude Protein, Starch, Breaking 

Force, Density, and Crude Fat, are located near the center, suggesting moderate or combined 

contributions to group differentiation. This arrangement demonstrates the opposing effects of 

Volume and Total Ash in driving group separation. At stage T3, PCA results confirm that the 

difference between infrared and ultraviolet irradiation effects is strongly pronounced and fully 

explained by PC1. Infrared exposure induces a more uniform and concentrated response in 

sample attributes, whereas ultraviolet exposure results in greater variability. Volume was 

identified as the primary indicator for the IR-T3 group, while Total Ash served as the main 

distinguishing variable for the UV-T3 group, with other variables playing moderating or shared 

roles. 

The greater variability observed under UV exposure may be due to its higher photon energy and 

surface-restricted penetration, which can trigger localized photochemical reactions, leading to 

heterogeneous responses among samples. In contrast, IR irradiation provides more uniform 

heating and deeper penetration, resulting in a more homogeneous response. This difference in 

interaction mechanisms between UV and IR likely underlies the variability pattern observed in 

PCA. 

 
Figure 8. Graph (Scores) from Principal Component Analysis (PCA) for separating IR UV irradiation time - based on physical and 

chemical properties 

 

Lamp Number Radiation Differences  

Principal component analysis for the IR20 and UV20 treatments (Figures 9A and 6B) revealed 

that the first principal component (PC1) accounted for 100% of the total variance, indicating that 

all variability among samples is captured along a single dimension. Figure 9A clearly shows 

separation between IR20 and UV20 samples, with IR20 samples located on the positive side of 

the PC1 axis and UV20 samples clustered on the negative side. The high density of points within 

each group indicates strong homogeneity in their responses to irradiation, while the substantial 

distance between clusters highlights the pronounced effect of irradiation type on sample 

characteristics. Figure 9B demonstrates that Total Ash, Breaking Force, and Crude Protein show 

strong positive correlations with PC1 and play a key role in distinguishing IR20 samples. 

Conversely, Crude Fat, pH, and Volume exhibit negative correlations with PC1 and are more 

closely associated with the UV20 group. Density lies near the center, indicating a weaker 

contribution to group separation. These patterns suggest that key physical and chemical attributes 

are primarily responsible for the observed differences between irradiation types. For the IR40 

and UV40 treatments, PCA analysis confirmed that PC1 again accounted for 100% of the total 

variance, with PC2 contributing negligibly to group differentiation. Figures 9C and 6D illustrate 

a clear and complete separation between IR40 and UV40 samples along the PC1 axis. IR40 

samples are primarily located in the upper-right quadrant (positive PC1 and PC2 values), while 

UV40 samples are positioned in the lower-left quadrant (negative PC1 and PC2 values). The 

compact clustering within each treatment reflects a high degree of internal homogeneity. 

Variable loading patterns indicate that Crude Fat, Breaking Force, Total Ash, and Crude Protein 

have strong positive correlations with PC1, associating them closely with IR40 samples. In 

contrast, Volume is the only variable with a notable negative correlation, linking it to UV40 

samples. Other variables, such as Density and Surface Area, contribute moderately or weakly to 

group differentiation. Overall, PCA for both IR20–UV20 and IR40–UV40 treatments confirms 

that irradiation type has a pronounced effect on sample characteristics, with physical and 
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chemical properties—particularly Crude Fat, Breaking Force, Total Ash, Crude Protein, and 

Volume—serving as the primary indicators for distinguishing between treatments. 

 
Figure 9. Score plots from Principal Component Analysis (PCA) illustrating the separation of IR and UV lamp treatments based on 

physical and chemical properties 

 

Conclusion 

Principal component analysis was employed in this study to comprehensively investigate the 

effects of UV and IR irradiation on the physical and chemical properties of the samples. Results 

indicated that the first principal component (PC1) accounted for the largest proportion of the 

variance in all analyses and, in some cases, explained 100% of the total variation. This 

demonstrates that the differences among samples were largely concentrated in a single principal 

dimension, primarily influenced by irradiation type and its impact on key attributes such as 

volume, density, breaking strength, total ash, crude protein, and crude fat. For UV treatments, 

samples exposed to UV20 and UV60 exhibited distinct patterns along the positive and negative 

axes of PC1, whereas UV40 showed greater dispersion, indicating higher variability in response 

at this irradiation level. In contrast, IR irradiation produced more compact and homogeneous 

clusters, particularly in IR60 and IR-T3 treatments, reflecting a more uniform response to 

infrared exposure. Comparative analysis of UV and IR treatments revealed fundamentally 

different effects on sample characteristics. Overall, UV irradiation induced greater variability in 

both physical and chemical properties, while IR irradiation resulted in more consistent responses. 

Physical parameters such as volume and density played key roles in discriminating among 

treatments, while chemical variables like crude protein and total ash also contributed 

significantly in certain cases. Moreover, the results demonstrated that increasing irradiation time 

(T1 to T3) intensified the differences between treatments, with variables more distinctly 

separating the groups. In summary, this study highlights that the type and intensity of irradiation 

(UV or IR) exert distinct influences on sample characteristics. PCA proved to be a powerful tool 

for identifying key variables and effectively differentiating treatment groups based on 

physicochemical properties. These findings provide a foundation for future research aimed at 

optimizing irradiation conditions to achieve desirable product characteristics. Furthermore, 

identifying influential variables such as volume and total ash may facilitate the development of 

rapid and accurate quality assessment methods under various irradiation conditions. Ultimately, 

integrating multivariate analyses like PCA with experimental studies offers deeper insight into 

the effects of environmental factors on material properties. 
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Figures: 

 
Figure 1. Schematic of the circuit and the UV radiation method 

(1) Sample location; (2) lamp circuit; (3) radiation chamber 

 

Figure 2. Schematic of the circuit and the IR radiation method 

(1) Sample location; (2) lamp circuit; (3) radiation chamber 
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Figure 3. The egg quasi-static loading diagram 

(1) Force deformation machine; (2) the location of the egg 

 

Figure 4. Schematic form of the egg physical characteristics for various forces 
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Figure 5. Principal component analysis score plot for the separation of samples based on the number of ultraviolet lamp treatments and 

their effects on physical and chemical properties. 
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Figure 6. Principal component analysis score plot for the separation of samples based on the number of infrared lamp treatments and 

their effects on physical and chemical properties. 
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Figure 7. Principal component analysis score plot comparing the effects of infrared and ultraviolet lamp treatments on physical and 

chemical properties. 
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Figure 8. Principal component analysis score plot for the separation of samples based on infrared and ultraviolet irradiation duration 

and their effects on physical and chemical properties. 
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Figure 9. Principal component analysis score plots illustrating the separation of samples subjected to different infrared and ultraviolet 

lamp treatments based on physical and chemical properties. 


