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Given the critical importance of egg quality for consumer health and the prevention of economic losses in the industry, 

identifying factors that maintain or enhance this quality is essential. This study aimed to investigate the effects of the nu mber 

and exposure time of ultraviolet and infrared lamps on the quality characteristics of eggs using Principal Component 

Analysis. A total of 56 intact eggs were collected and subjected to pre-treatments with ultraviolet and infrared lamps, both 

with and without sunflower oil coating. Subsequently, quality parameters of the samples were measured, and the resulting 

data were evaluated using Principal Component Analysis. The Principal Component Analysis results indicated that the type 

and intensity of ultraviolet and infrared irradiation had distinct impacts on egg quality attributes. Ultraviolet exposure 

produced more diverse patterns, whereas infrared exposure resulted in more uniform responses. Quality variables such as 

volume, density, crude protein, and total ash played the most significant roles in differentiating the treatments. Moreover, 

prolonged exposure time intensified differences between groups, highlighting Principal Component Analysis as an effective 

tool for identifying key factors influencing egg quality.

1. Introduction

Nowadays, the use of eggs as a complete nutritional 

package has become increasingly widespread, both 

directly and indirectly. Therefore, their quality holds 

significant importance [1]. The concept of quality in eggs 

is highly complex and encompasses various attributes, 

including egg size, shell color and integrity, shape, and 

internal quality characteristics [2]. Immediately after 

laying, the deterioration process of the egg characterized 

by chemical and nutritional changes begins, accompanied 

by the release of CO₂ and alterations in pH levels [3] . 

Furthermore, the deterioration of egg albumen during 

storage depends on storage conditions (temperature and 

relative humidity) as well as the characteristics of the 

eggshell [4]. The duration of storage is generally used as 

a key indicator for distinguishing between fresh eggs and 

those suitable for consumption [5]. However, considering 

the points mentioned above, the number of days post-

laying alone cannot be relied upon. Therefore, variable 

chemical indicators during storage are regarded as key 

determinants of egg freshness [6]. The egg industry 

worldwide is responsible for producing eggs with high 

internal and external quality, which is essential for its 

economic sustainability. Currently, egg quality issues 

impose significant costs on the industry. So, 

understanding the factors that influence both internal and 

external quality is of great importance. In light of these 

considerations, eggs must be evaluated in terms of both 

internal and external quality. In the past, various methods 

have been employed to assess the internal contents of 

eggs, which can generally be categorized into destructive 

and non-destructive techniques [7] . One advantage of 

various destructive methods over non-destructive 

techniques is that measurements can be performed 

directly on the internal contents of the egg [8]. However, 

in this approach, eggs must be broken, which limits 

testing to a small number of samples. Moreover, 

destructive evaluation methods are time-consuming and 

require specialized sample preparation [9]. On the other 

hand, in non-destructive methods, attributes related to the 

albumen and yolk are measured in intact eggs. These 

assessments can be performed on the production line, in 

real time, and are applicable to all eggs [10] . Cedro et al. 

(2009) investigated the internal contents of eggs, 

analyzing the yolk and albumen separately, to examine 

the effect of storage duration on pH levels. The storage 

period was set at 44 days. Their results showed that with 

increasing storage time, the pH of both the yolk and 

albumen increased significantly [11]. Previous research in 

this field has examined the effect of storage time on the 

protein content of eggs, and the findings demonstrated 
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that prolonged storage leads to a decrease in egg protein 

content. In general, the evaluation of physical and 

chemical characteristics of agricultural products can be 

reflected by various indicators; however, comprehensive 

analysis of these dispersed indicators is challenging. 

Principal Component Analysis (PCA) is an analytical 

method that summarizes numerous variables into a few 

comprehensive components and explains the correlations 

among different variables, along with Pearson correlation 

analysis [12]. Ultimately, considering the critical 

importance of egg quality, examining the factors that 

contribute to its preservation or deterioration during 

storage is essential. Despite various studies conducted on 

egg quality assessment, a comprehensive analysis using 

PCA to evaluate the effects of different influencing 

factors has not yet been performed. Therefore, the 

objective of this study is to investigate the effects of the 

number and exposure time of UV and IR lamps on the 

qualitative attributes of eggs through principal component 

analysis. 

 

2. Materials and methods 

 

2.1. Samples preparation and treatment selection 

 

In this study, 56 healthy eggs were collected from an 

egg layer flock (Hyline W36 strain with 30 weeks of egg) 

in a private company near the city of Gorgan, Golestan 

province on October 13, 2018. The produced eggs, with 

an average weight of 72 g, were transferred to Gorgan 

University of Agricultural Sciences and Natural 

Resources, Gorgan, Iran, for further analysis. A total of 

28 eggs were exposed to UV radiation, and another 28 

eggs were subjected to IR radiation. Each group was 

subsequently divided into two subgroups: sunflower oil-

smeared and non-smeared. The sunflower was used 

because of its positive effect on shelf life and eggs 

quality. The samples were stored for two days, after 

which their the physical and mechanical properties were 

measured. 

 

2.2. Moisture measurement 

 

After the egg contents were placed in an oven at 

100°C for 24 h, the moisture content was measured by 

the weight loss method, as described by Azadbakht et al. 

(2016). The egg contents were dried until a constant 

weight was achieved, indicating negligible further 

moisture loss, over a 24-hour period.  

 

2.3. Ultraviolet radiation method 

 

As shown in Fig. 1., the UV light was produced by an 

array of LEDs. The specifications for these LEDs were as 

follows: 3 mm in diameter, a wavelength of 400 nm 

(within the UV-A spectrum), and an operating voltage of 

3-4 volts. The light source was positioned parallel to the 

floor at a height of 40 cm above the samples. The entire 

circuit operated at 12 volts and 0.84 amperes, and the UV 

radiation was applied over an area of 20×50 cm2 [14]. 

Figures: 

 
Fig. 1. Schematic of the circuit and the Ultraviolet radiation method 

(1) sample location; (2) lamp circuit; (3) radiation chamber 

 

2.4. Infrared radiation method 

 

Fig. 2. illustrates the IR light source and the egg 

irradiation setup. In this method, several IR LEDs were 

used, each with a diameter of 3 mm, a wavelength of 850 

nm, and an operating voltage of 3.3–4 V. The distance of 

IR light source and samples was parallel to the floor in 

height of 40cm. The characteristics of the whole circuit 

were 12 volts, 0.84 amperes, with the IR radiation applied 

over an area of 50×20 cm2 [15]. 

 

 
Fig. 2. Schematic of the circuit and the Infrared radiation method 

(1) sample location; (2) lamp circuit; (3) radiation chamber 

 

2.5. Quasi-static test 

 

The required failure force of eggshells under 

quasistatic loading was investigated in three cases of 

impregnated specimens without impurities in sunflower 

oil under the magnetic field and control. Quasi-static 

loading indicates sample resistance to failure, so the 

extracted data is suitable for investigating the effect of the 

IR and UV radiation and impurity on sunflower oil. 

Thin-edge quasi-static tests were conducted using a 

universal testing machine (Santam STM-5; SANTAM 

Engineering and Design Company, Tehran, Iran) under a 

500 N load during the pressure test. A plastic jaw with a 

thin edge measuring 3 × 15 mm was employed for testing 

(Fig. 3). To increase measurement accuracy, the loading 

speed of the device during the application of pressure was 

set at 0.33 mm/min along the z-axis (Fig. 4.). The test 
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was performed in three replications, and the eggshell 

failure force was subsequently recorded. The compressive 

force was applied along the z-axis due to the high 

vulnerability of the egg in this direction. Loading 

continued until eggshell failure occurred, after which the 

force–extension curve was generated using the Instron 

system, and the corresponding data were extracted. The 

eggshell breaking force was determined from the force–

deformation curve, where a distinct and abrupt change in 

force indicates the point of shell failure [16]. 

 

 

 
Fig. 3. The egg quasi-static loading diagram 

(1) force deformation machine; (2) the location of the egg 

 

 
Fig. 4. Schematic form of the egg physical characteristics 

 for various forces 

 

2.6. Principal component analysis 

 

In this study, the collected data were analyzed using 

the Unscrambler X 10.4 (64-bit) software. Originally 

developed by Harald Martens and later enhanced by 

CAMO, this software is recognized as a specialized tool 

for multivariate data analysis. Its key features include 

data calibration, predictive modeling, and the 

implementation of advanced chemometric techniques. 

Principal component analysis was employed as one of the 

primary analytical methods to examine correlations 

among different variables, including broad-edge, thin-

edge, and impact scores, as well as physical and chemical 

loadings. PCA transforms a set of correlated variables 

into a limited number of independent variables (i.e., 

principal components), allowing for dimensionality 

reduction and noise elimination. This method not only 

compresses data but also preserves the maximum 

variance, enabling a more accurate interpretation of the 

underlying data structure. As an unsupervised technique, 

PCA does not require the definition of a dependent 

variable, relying solely on intrinsic data relationships. 

This feature makes PCA particularly effective for 

exploratory studies and for identifying hidden patterns or 

natural groupings within datasets. Such analyses assist 

researchers in assessing inter-variable relationships with 

greater precision, ultimately leading to the development 

of more reliable and optimized models [17]. 

 

3. Results and discussion 

 

3.1. Principal component analysis  
 

The collected data were analyzed using the 

Unscrambler X 10.4 (64-bit) chemometric software. The 

main strength of Unscrambler X lies in its ability to 

provide robust tools for the analysis of various types of 

multivariate data. It offers functionalities for data 

calibration and predictive modeling. Originally developed 

by Harald Martens and later enhanced by CAMO, the 

software supports principal component analysis, Partial 

least squares (PLS) regression, multivariate curve 

resolution, and other advanced analytical techniques. In 

this study, PCA was applied to examine the correlations 

between irradiation treatments, the number of lamps, and 

exposure time (scores) and the physical and chemical 

characteristics of the eggs (loadings). This method 

reduces a large set of interrelated variables into a smaller 

number of uncorrelated components while minimizing 

noise. Essentially, PCA serves as a data compression 

technique, transforming correlated variables into new, 

uncorrelated variables known as principal components. 

This process reduces the dimensionality of the feature 

space and is classified as an "unsupervised" method, 

meaning it does not require the definition of a dependent 

variable [17]. 
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3.2. Ultraviolet radiation differences 
 

Fig. 5. presents PCA used to assess differences 

resulting from UV irradiation based on the physical and 

chemical properties of the samples. It consists of two 

sections: A (scores plot) and B (correlation loadings plot). 

In section A, known as the scores plot, the positioning of 

the samples is displayed according to the two principal 

components, PC1 and PC2. The first component (PC1) 

explains the largest portion of the variance, while the 

second component (PC2) accounts for the next highest 

level of variation. Each sample group is labeled according 

to the UV intensity applied—UV20, UV40, and UV60—

represented by different symbols and colors. The UV40 

data show greater dispersion along both principal 

components compared to UV20 and UV60, indicating 

more diverse changes in physical and chemical properties 

under these conditions. Conversely, the UV20 samples 

are mostly concentrated on the right-hand side and in the 

positive region of PC1, suggesting distinct compositional 

characteristics compared to other groups. UV60 samples, 

compared with UV40, are more densely clustered and 

tend to align toward the positive region of PC1, implying 

higher similarity in their attributes. The Hotelling’s T² 

ellipse illustrates the 95% confidence interval, with most 

points falling within the boundary, indicating an absence 

of significant outliers. Fig. 5B. shows the direction and 

strength of the correlation between each physical and 

chemical characteristic and the principal components. 

Each point represents a variable, and its position in the 

PC1–PC2 space indicates its contribution to explaining 

the variance in the dataset. For instance, Volume is 

located on the right side near the unit circle boundary, 

suggesting a strong correlation with PC1 and a key role in 

distinguishing between groups. Similarly, Crude protein 

and Sphericity are positioned in the positive PC1 region, 

though slightly inclined toward PC2, indicating partial 

association with both components. Crude fat also shows a 

positive correlation with PC1 but to a lesser extent than 

Volume. In contrast, Total Ash and Breaking Force are 

located in the negative regions of both PC1 and PC2, 

reflecting an opposite influence compared to variables 

such as Volume. Meanwhile, pH and Density are 

positioned near the center, indicating a relatively smaller 

contribution to overall variance compared to other traits. 

Comparing plots A and B reveals that the distribution of 

samples in the scores plot (A) directly corresponds to the 

positioning of physical and chemical variables in the 

correlation loadings plot (B). For instance, because 

Volume lies in the positive PC1 region, groups positioned 

there (e.g., most UV60 samples) likely exhibit higher 

Volume values. Conversely, groups in the negative PC1 

region, such as UV20, are likely associated with higher 

Total Ash content or related attributes. Overall, the PCA 

effectively distinguishes between UV irradiation groups 

based on multiple quality parameters. The UV40 group 

exhibits the highest internal variability, possibly 

reflecting an optimal or more sensitive response at this 

irradiation level. Meanwhile, UV20 and UV60 display 

distinct patterns along the negative and positive PC1 

regions, respectively, driven by variations in traits such as 

Volume, Crude Protein, and Total Ash. These findings 

provide valuable insights into the effects of UV intensity 

and support optimization of irradiation conditions to 

achieve desirable physicochemical properties in eggs. 

 

A B 

  

  
Fig. 5. Graph (Scores) from Principal Component Analysis (PCA) to separate the number of UV lamps based on physical and chemical properties 
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3.3. Infrared radiation  differences  
 

A B 

  
Fig. 6. Graph (scores) from principal component analysis (PCA) for the number of IR lamp separations based on physical and chemical properties 

 

3.4. Infrared and Ultraviolet radiation  differences  

 

According to Fig. 6A., the first principal component 

(PC1) accounts for 100% of the variance, capturing all 

variations present in the dataset. This proportion indicates 

that the primary separation and differentiation of samples 

are entirely driven by PC1. In other words, most physical 

and chemical characteristics influenced by IR irradiation 

exhibit changes that are predominantly aligned along 

PC1. The scores plot illustrates the positioning of 

samples in the two-dimensional space defined by the 

principal components. IR20 samples are mainly located 

on the positive side of PC1, suggesting higher values for 

characteristics positively associated with this axis. The 

IR60 group is also concentrated in the positive PC1 

region but displays tighter clustering, indicating greater 

similarity within this group and a stronger effect of high-

intensity IR exposure. IR40 samples, however, are more 

dispersed between the two groups, showing the highest 

internal variability—some samples align closely with 

IR20, while others approach IR60. This pattern reflects a 

transitional or intermediate state of characteristics under 

moderate IR exposure. The loadings plot displays the 

relationship between physicochemical variables and 

principal components. Volume shows the highest positive 

correlation with PC1, playing a significant role in 

differentiating the IR60 group. Crude protein and 

Sphericity also align with the positive PC1 region, 

contributing to the separation of samples exposed to 

higher IR levels. Conversely, Total Ash and Breaking 

Force are positioned in the negative PC1 or negative PC2 

regions, placing them closer to the IR20 group. pH and 

Density appear near the center, indicating a smaller 

influence on overall group differentiation. Combining 

both plots demonstrates that IR intensity has a clear 

impact on the pattern of physicochemical characteristics. 

PC1 serves as the primary axis of separation, reflecting 

major variations such as increased volume and sphericity 

at higher irradiation levels (IR60) and increased total ash 

content at lower irradiation levels (IR20). IR40 occupies 

an intermediate position, with greater dispersion 

indicating a transitional stage in sample response to IR 

treatment. Overall, this PCA analysis not only reveals 

distinct group separations but also identifies the key 

variables responsible for these differences, enabling a 

deeper scientific interpretation of the relationship 

between IR intensity and structural–chemical changes in 

eggs. 

In the PCA analysis, the contribution of each principal 

component to the total variance was first examined. The 

results indicated that PC1 alone accounted for the largest 

share of variance (100% of the significant variance). This 

finding suggests that the main differences among samples 

can be represented along a single dimension, with PC1 

providing a highly accurate depiction of these variations. 

In Fig. 7A., samples subjected to IR and UV treatments 

are clearly separated, forming two distinct clusters. The 

close proximity of points within each cluster indicates 

good repeatability and high similarity among samples 

within the same treatment group. Since the horizontal 

axis (PC1) explains nearly all variance, the observed 

separation is largely attributed to the variables 

represented by this component. Fig. 7B. shows that 

variables such as Volume, Density, and Breaking 

Resistance have the highest loadings on PC1, making 

them the most influential in differentiating between 

treatments. Most variables exhibit similar orientations 

and high correlations with one another, suggesting that 

they may change simultaneously under the influence of 

irradiation type. The PCA results revealed that the effects 

of IR and UV irradiation on the physicochemical 

properties of the samples are clearly distinct, with these 

differences being primarily explained by PC1. Physical 

attributes, such as volume and density, play the most 

significant roles in this separation, whereas chemical 

variables contribute to a lesser extent. These findings 

provide a valuable basis for focusing on key traits in 

future studies. 
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A B 

 
 

 

Fig. 7. Scores from Principal Component Analysis (PCA) to separate the number of IR UV lamps - based on physical and chemical properties 

 

3.5. Time radiation differences  

 

The variance analysis of the components revealed that 

PC1 alone explained 100% of the total variance, while 

other components contributed negligibly. This result 

indicates that nearly all variations between IR-T1 and 

UV-T1 samples are concentrated along a single principal 

dimension, allowing for a precise interpretation of 

differences based solely on PC1. In Fig. 8A., samples 

subjected to IR-T1 and UV-T1 treatments are clearly 

separated, forming two distinct clusters. UV-T1 samples 

(blue squares) are closely grouped, displaying a compact 

clustering pattern that suggests greater homogeneity in 

response to ultraviolet irradiation. In contrast, IR-T1 

samples (red circles) exhibit greater dispersion, indicating 

higher variability in response to infrared exposure. The 

considerable distance between the centers of the two 

clusters highlights a fundamental difference between the 

effects of these two types of irradiation on sample 

properties. Fig. 8B. illustrates that most variables are 

concentrated within a specific region and show strong 

intercorrelation. Volume, density, and breaking force 

exhibit the highest loadings on PC1, making them the key 

factors driving treatment separation. Other variables, such 

as crude fat, crude protein, starch, and total ash, are 

positioned further from the cluster center, reflecting a 

more moderate or treatment-specific influence. The 

similar orientation of all variables within the same half-

plane indicates that their changes are aligned and likely 

occur simultaneously with variations in irradiation type. 

PCA results at T1 demonstrate that the effects of IR and 

UV irradiation on samples differ significantly, with these 

differences being almost entirely explained by PC1. The 

more compact clustering of UV-T1 indicates greater 

consistency and uniformity under UV treatment, while 

the wider spread of IR-T1 reflects a higher degree of 

variability in response to IR exposure. Physical variables 

such as volume, density, and breaking force play the 

primary roles in distinguishing the two treatments and 

may serve as key indicators for future studies. 

In Figs. 8C and 5D, principal component variance 

analysis revealed that PC1 alone accounted for 100% of 

the total variance, while the remaining components 

contributed negligibly. This indicates that nearly all 

differences between IR-T2 and UV-T2 samples are 

captured along a single principal dimension (PC1), 

enabling the interpretation to be primarily based on this 

component. In Fig. 8C, IR-T2 and UV-T2 samples are 

clearly separated, forming two distinct clusters. IR-T2 

samples (red circles) exhibit a more compact and closely 

grouped cluster, indicating greater uniformity in response 

to infrared irradiation. In contrast, UV-T2 samples (blue 

squares) display greater dispersion, suggesting higher 

variability in response to ultraviolet exposure. The 

considerable distance between the centers of the two 

clusters highlights a fundamental difference in the effects 

of these two irradiation types at stage T2. Fig. 8D. shows 

that most variables are concentrated within a specific 

region and display strong intercorrelation. Variables such 

as volume, density, cooking force, and cooking time have 

the highest loadings on PC1 and play a key role in 

distinguishing between the two treatments. Variables 

such as crude fat and total ash are positioned slightly 

further from the cluster center, indicating a more 

moderate or treatment-specific role. The similar 

orientation of all variables within the positive half-plane 

of PC1 suggests that their variations are aligned and 

likely influenced by similar irradiation effects. At stage 

T2, PCA results demonstrate that the effects of IR and 

UV irradiation on sample properties are substantially 

different, with these differences fully explained by PC1. 

Infrared irradiation induces a more uniform and 

consistent response, whereas ultraviolet irradiation results 

in greater variability among sample characteristics. 

Physical and functional attributes such as volume, 

density, and cooking parameters play a decisive role in 

this differentiation and can be considered key indicators 

for assessing irradiation effects at this stage. 

In Figs. 8E. and 5F., principal component variance 

analysis revealed that PC1 alone accounted for the entire 

variance in the dataset. This indicates that all observed 

differences between IR-T3 and UV-T3 samples are 

concentrated along a single principal dimension (PC1), 

making its analysis sufficient for interpreting the results. 

In Fig. 8E., IR-T3 samples (red circles) are located in the 

upper-right region, while UV-T3 samples (blue squares) 

are positioned in the lower-left region, indicating a 

complete contrast in their PC1 and PC2 values. The IR-
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T3 cluster is more compact, reflecting a high level of 

uniformity in response to infrared irradiation, whereas the 

UV-T3 cluster shows greater dispersion, suggesting 

higher variability in response to ultraviolet exposure. The 

substantial distance between the centers of the two 

clusters highlights a fundamental difference in the sample 

properties. Fig. 8F. further illustrates that the volume 

variable exhibits the highest positive loading on PC1, 

making it a key factor in distinguishing the IR-T3 group. 

Conversely, total ash displays the highest negative 

loading and is more closely associated with the UV-T3 

group. Other variables, including crude protein, starch, 

breaking force, density, and crude fat, are located near the 

center, suggesting moderate or combined contributions to 

group differentiation. This arrangement demonstrates the 

opposing effects of volume and total ash in driving group 

separation. At stage T3, PCA results confirm that the 

difference between infrared and ultraviolet irradiation 

effects is strongly pronounced and fully explained by 

PC1. Infrared exposure induces a more uniform and 

concentrated response in sample attributes, whereas 

ultraviolet exposure results in greater variability. Volume 

was identified as the primary indicator for the IR-T3 

group, while total ash served as the main distinguishing 

variable for the UV-T3 group, with other variables 

playing moderating or shared roles. 

The greater variability observed under UV exposure 

may be due to its higher photon energy and surface-

restricted penetration, which can trigger localized 

photochemical reactions, leading to heterogeneous 

responses among samples. In contrast, IR irradiation 

provides more uniform heating and deeper penetration, 

resulting in a more homogeneous response. This 

difference in interaction mechanisms between UV and IR 

likely underlies the variability pattern observed in PCA. 

 

A B 

  
C D 

  
E F 

  
Fig. 8. Graph (Scores) from Principal Component Analysis (PCA) for separating IR UV irradiation time - based on physical and chemical properties 

 

3.6. Lamp number radiation differences  

 

Principal component analysis for the IR20 and UV20 

treatments (Figs. 9A. and 6B.) revealed that the first 

principal component (PC1) accounted for 100% of the 

total variance, indicating that all variability among 

samples is captured along a single dimension. Fig. 9A. 

clearly shows separation between IR20 and UV20 
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samples, with IR20 samples located on the positive side 

of the PC1 axis and UV20 samples clustered on the 

negative side. The high density of points within each 

group indicates strong homogeneity in their responses to 

irradiation, while the substantial distance between 

clusters highlights the pronounced effect of irradiation 

type on sample characteristics. Fig. 9B. demonstrates that 

total ash, breaking force, and crude protein show strong 

positive correlations with PC1 and play a key role in 

distinguishing IR20 samples. Conversely, crude fat, pH, 

and volume exhibit negative correlations with PC1 and 

are more closely associated with the UV20 group. 

Density lies near the center, indicating a weaker 

contribution to group separation. These patterns suggest 

that key physical and chemical attributes are primarily 

responsible for the observed differences between 

irradiation types. For the IR40 and UV40 treatments, 

PCA analysis confirmed that PC1 again accounted for 

100% of the total variance, with PC2 contributing 

negligibly to group differentiation. Figs. 9C. and 6D. 

illustrate a clear and complete separation between IR40 

and UV40 samples along the PC1 axis. IR40 samples are 

primarily located in the upper-right quadrant (positive 

PC1 and PC2 values), while UV40 samples are 

positioned in the lower-left quadrant (negative PC1 and 

PC2 values). The compact clustering within each 

treatment reflects a high degree of internal homogeneity. 

Variable loading patterns indicate that crude fat, breaking 

force, total ash, and crude protein have strong positive 

correlations with PC1, associating them closely with 

IR40 samples. In contrast, volume is the only variable 

with a notable negative correlation, linking it to UV40 

samples. Other variables, such as density and surface 

area, contribute moderately or weakly to group 

differentiation. Overall, PCA for both IR20–UV20 and 

IR40–UV40 treatments confirms that irradiation type has 

a pronounced effect on sample characteristics, with 

physical and chemical properties—particularly crude fat, 

breaking force, total ash, crude protein, and volume—

serving as the primary indicators for distinguishing 

between treatments. 

 

A B 

  
C D 

  

E F 

  
Fig. 9. Score plots from Principal Component Analysis (PCA) illustrating the separation of IR and UV lamp treatments based  

on physical and chemical properties 
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4. Conclusion 

 

Principal component analysis was employed in this 

study to comprehensively investigate the effects of UV 

and IR irradiation on the physical and chemical properties 

of the samples. The results indicated that the first 

principal component (PC1) accounted for the largest 

proportion of the variance in all analyses and, in some 

cases, explained 100% of the total variation. This 

demonstrates that the differences among samples were 

largely concentrated in a single principal dimension, 

primarily influenced by irradiation type and its impact on 

key attributes such as volume, density, breaking strength, 

total ash, crude protein, and crude fat. For UV treatments, 

samples exposed to UV20 and UV60 exhibited distinct 

patterns along the positive and negative axes of PC1, 

whereas UV40 showed greater dispersion, indicating 

higher variability in response at this irradiation level. In 

contrast, IR irradiation produced more compact and 

homogeneous clusters, particularly in IR60 and IR-T3 

treatments, reflecting a more uniform response to infrared 

exposure. Comparative analysis of UV and IR treatments 

revealed fundamentally different effects on sample 

characteristics. Overall, UV irradiation induced greater 

variability in both physical and chemical properties, 

while IR irradiation resulted in more consistent 

responses. Physical parameters such as volume and 

density played key roles in discriminating among 

treatments, while chemical variables like crude protein 

and total ash also contributed significantly in certain 

cases. Moreover, the results demonstrated that increasing 

irradiation time (T1 to T3) intensified the differences 

between treatments, with variables more distinctly 

separating the groups. In summary, this study highlights 

that the type and intensity of irradiation (UV or IR) exert 

distinct influences on sample characteristics. PCA proved 

to be a powerful tool for identifying key variables and 

effectively differentiating treatment groups based on 

physicochemical properties. These findings provide a 

foundation for future research aimed at optimizing 

irradiation conditions to achieve desirable product 

characteristics. Furthermore, identifying influential 

variables such as volume and total ash may facilitate the 

development of rapid and accurate quality assessment 

methods under various irradiation conditions. Ultimately, 

integrating multivariate analyses like PCA with 

experimental studies offers deeper insight into the effects 

of environmental factors on material properties. 
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