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 Detecting fraud in the cinnamon supply chain is critical for ensuring consumer safety and maintaining product integrity. 

Recent advances in spectral data preprocessing techniques offer enhanced accuracy in identifying adulterants in spices like 

cinnamon. This study investigates the impact of different spectral preprocessing techniques on predicting adulterants—

specifically soybean powder, hazelnut shell powder, and dry bread powder—mixed with cinnamon powder using 

spectroscopy combined with multivariate analysis. The transmittance spectra were collected across the mid-infrared range of 

2–4000 cm⁻¹, and Partial Least Squares Regression (PLSR) was employed to model the adulteration levels based on these 

spectra. Various preprocessing methods were applied to optimize the spectral data. Among them, orthogonal signal 

correction (OSC) combined with detrending yielded the highest predictive accuracy, with a coefficient of predict ion (R²p) 

ranging from 0.900 to 0.981. Conversely, Extended Multiplicative Scatter Correction (EMSC) and Savitzky-Golay second 

derivative (D2) were less effective, with R²p values between 0.115 and 0.931. Soybean powder was the easiest adulterant to 

detect, with a prediction error range of 5–10%. These findings underscore the importance of selecting appropriate 

preprocessing techniques to improve the accuracy of fraud detection in cinnamon powder using spectroscopic methods.  
 

 

1. Introduction  

 

Food fraud, particularly in the spice industry, has 

emerged as a significant global concern, jeopardizing 

consumer health and undermining market integrity 

[1,2]. Spices, including cinnamon, are highly valued not 

only for their flavor and aroma but also for their 

numerous health benefits [3,4]. The high market value 

of authentic spices makes them susceptible to 

adulteration, where cheaper substances are added to 

enhance weight or appearance [5,6]. This practice can 

mislead consumers, posing potential health risks due to 

the introduction of harmful additives or low-quality 

materials [7,8]. Furthermore, food fraud can severely 

impact the economy, as it erodes consumer trust and 

diminishes the reputation of legitimate producers. As 

the complexity and prevalence of food fraud continue to 

rise, effective detection methods become imperative to 

protect consumer interests and ensure food quality. 

Fourier-transform infrared (FTIR) spectroscopy has 

gained prominence as a powerful tool for detecting food 

adulteration, thanks to its ability to provide detailed 

molecular information about food samples [9–11]. FTIR 

spectroscopy is based on the principle of measuring the 

absorption of infrared light by a sample, producing a 

unique spectral fingerprint that corresponds to its 

molecular composition [12,13]. This technique offers 

several advantages, including non-destructive analysis, 

rapid data acquisition, and minimal sample preparation 

requirements [14]. Additionally, FTIR can analyze 

solid, liquid, and gas samples across a broad range of 

wavelengths, making it highly versatile for various 

applications in food science [15–17]. Its ability to 

identify specific functional groups in chemical 

compounds enables researchers to differentiate between 

pure and adulterated products, making FTIR a valuable 

method for quality control in the food industry [18]. 

In recent years, the application of FTIR spectroscopy 

in food authentication has expanded significantly, 

particularly in the detection of adulterants in spices [19–

21]. Numerous studies have demonstrated its 

effectiveness in identifying various adulterants in spice 

products, providing a rapid and reliable means of 

ensuring product integrity [22–24]. For instance, FTIR 

has been successfully employed to differentiate between 

pure spices and those mixed with cheaper fillers or 

artificial additives, thus safeguarding consumer 

interests. The integration of FTIR with advanced data 

analysis techniques, such as multivariate analysis, 

enhances its capability to classify samples based on 

spectral data [25–27]. By applying sophisticated 

algorithms to process the spectral information, 

researchers can improve the accuracy of fraud detection, 

enabling the identification of specific adulterants and 

their concentrations in spice products [28]. 

Cinnamon, a popular spice derived from the inner 

* Corresponding author: khodabakhshian@um.ac.ir 

DOI: http://dx.doi.org/10.22104/IFT.2025.7722.2223 

(Received: 03 July 2025, Received in revised form: 03 August 2025, Accepted: 24 August 2025) 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 

mailto:khodabakhshian@um.ac.ir
mailto:khodabakhshian@um.ac.ir
http://creativecommons.org/licenses/by/4.0/


 
R. Khodabakhshian et al. / Innovative Food Technologies 13(1)(2025) 1-12  2 

bark of Cinnamomum trees, is not only valued for its 

culinary uses but also for its health-promoting 

properties, including antioxidant and anti-inflammatory 

effects [29]. Unfortunately, the rising demand for 

cinnamon has led to increased incidents of adulteration, 

where lower-quality cinnamon varieties, such as Cassia, 

are often substituted for authentic Ceylon cinnamon 

[30]. This fraudulent practice can mislead consumers 

and diminish the health benefits associated with genuine 

cinnamon. The complexity of cinnamon's chemical 

composition and the presence of similar aromatic 

compounds in adulterants complicate detection efforts. 

Therefore, it is crucial to develop robust analytical 

methods that can effectively differentiate between pure 

and adulterated cinnamon, ensuring that consumers 

receive authentic products and promoting confidence in 

the spice market [31]. 

This study aims to investigate the influence of data 

preprocessing techniques on the predictive accuracy of 

multivariate models for detecting cinnamon adulteration 

using FTIR spectroscopy. By employing various 

preprocessing methods, the research seeks to enhance 

the reliability of spectral data analysis, enabling more 

accurate identification of adulterants such as soybean 

powder, hazelnut shell powder, and dried bread powder 

in cinnamon products. This research presents a 

comprehensive evaluation of 14 data preparation 

methodologies employed in FTIR spectral analysis for 

the identification of adulteration in cinnamon powder. 

Furthermore, the inclusion of three adulterants (soybean 

powder, hazelnut shell powder, and dry bread powder) 

contributes to the broader generalizability of the results. 

based on authors’ knowledge, these specific adulterants 

have very limitted previously investigated in the context 

of spice adulteration specially in cinnamon powder, 

making this research a novel contribution to the field. 

The findings of this study will contribute to improving 

food quality assurance practices, providing insights into 

the effectiveness of FTIR spectroscopy in combating 

food fraud, and ultimately supporting consumer health 

and safety. 

 

 

 

Fig 1. Prepared samples, Ci (cinnamon powder), Ds (soybean powder), Hn (hazelnut shell powder), Db (dry bread powder). 

 

2. Materials and methods 

 

2.1. Collection and preparation of samples 

 

In this study, various ingredients were acquired from 

local markets in Mashhad, Iran, specifically focusing on 

their authenticity and quality for food analysis. The 

primary ingredient used was Cinnamomum verum, 

commonly known as cinnamon, which was selected for 

its exceptional quality. The preparation involved a 

meticulous cleaning process to eliminate contaminants, 

followed by an air-drying phase that preserved its 

natural characteristics. After drying, the cinnamon was 

finely processed using a high-precision grinder to obtain 

a standard cinnamon powder, which served as the 

baseline for comparison in our experiments. 

To simulate common adulteration practices, this 

study also utilized several potential adulterants, 

including roasted soybean grains, cleaned and ground 

hazelnut shells, and powdered dried bread. Each 

adulterant was processed according to established 

methods documented in previous studies, including 

those by Hashemi-Nasab et al. (2023) and 

Khodabakhshian et al. (2021), with necessary 

adaptations made to suit the parameters of our 

investigation [32,33]. The soybean was lightly toasted 

before grinding to reflect typical processing conditions, 

while the hazelnut shells were dried and pulverized into 

a consistent powder form. The dried bread was ground 

and sieved to achieve a uniform texture compatible with 

the other ingredients. 

All the selected samples underwent a standard 

grinding procedure to ensure uniform particle size. 

Following this, they were passed through a mesh sieve 

to maintain consistent particle distribution, which is 

critical for accurate analysis. To create mixed samples, 

the cinnamon powder was combined with varying 

proportions of the adulterants—5%, 10%, and 15% by 

weight. Fig 1. presents the various prepared mixtures. 

The composition of the sample groups, including pure 

and adulterated powders, along with the number of 

replicates, is summarized in Table 1. This blending was 
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executed thoroughly to achieve a homogeneous mixture, 

which is representative of actual adulteration practices. 

Each adulterated mixture was prepared in triplicate, 

including controls of pure cinnamon powder. The final 

samples were securely packaged in airtight bags to 

shield them from external factors like moisture and 

light. They were stored in a controlled environment to 

preserve their integrity until the spectroscopic 

evaluations were conducted. 

 
Table 1. Composition of sample groups and number of replicates 

Sample NO. Description 
Adulterant Level 

(% w/w) 

No. of Unique 

Samples 

Replicates per 

Sample 

Weight of per 

sample 

Total 

Measurements 

1 Pure cinnamon powder (Ci) 0% 1 5 10g 5 

2 Pure soybean powder (Ds) 100% 1 5 10g 5 

3 Pure hazelnut shell powder (Hn) 100% 1 5 10g 5 

4 Pure dried bread powder (Db) 100% 1 5 10g 5 

5 Cinnamon + Soybean powder (CiDs) 5%, 10%, 15% 3 5 10g 15 

6 Cinnamon + Hazelnut shell powder 

(CiHn) 

5%, 10%, 15% 3 5 10g 15 

8 Cinnamon + Dried bread powder 

(CiDb) 

5%, 10%, 15% 3 5 10g 15 

Total   13   65 

 
 

2.2. Spectra data acquisition 

 

In this study, an Avatar 370 FTIR spectrometer 

(Thermo Nicolet Corporation, Madison, WI, USA) 

equipped with a deuterated triglycine sulfate (DTGS) 

detector and a KBr beamsplitter was employed to detect 

adulteration in cinnamon powder. The spectrometer 

operates in the mid-infrared range (4000–400 cm
-
¹) with 

a spectral resolution of 4 cm
-
¹ and a wavenumber 

accuracy of ±0.01 cm
-
¹. The system includes 

an attenuated total reflectance (ATR) accessory with a 

diamond crystal, allowing for minimal sample 

preparation and direct analysis of powdered samples. 

Each spectrum was obtained by averaging 32 

scans per sample to enhance the signal-to-noise ratio 

(SNR). The instrumental setup and spectral acquisition 

process are illustrated in Fig 2. To ensure data 

reproducibility, the spectrometer was calibrated weekly 

using a polystyrene standard, and background scans 

were performed before each measurement session. 

For data acquisition and initial preprocessing, 

OMNIC spectroscopy software (Thermo Nicolet 

Corporation, Madison, WI, USA) was used. This 

software supports real-time spectral correction, baseline 

adjustment, and noise reduction. Further, advanced 

preprocessing was conducted using Unscrambler X 

V10.4 (Camo Analytics, Oslo, Norway), as detailed in 

the following sections. 

 

 

 
Fig 2. A schematic diagram of the proposed procedure. 
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2.3. Spectral preprocessing 

 

To ensure accurate multivariate modeling for 

detecting adulteration in cinnamon powder, several 

spectral preprocessing techniques were applied. These 

preprocessing steps were conducted using the 

Unscrambler X software (version 10.4, CAMO Software 

AS, Bedford, Massachusetts, United States). Initially, 

orthogonal signal correction (OSC) was used to remove 

variations unrelated to the cinnamon adulteration while 

preserving the primary information relevant to the 

spectral analysis. OSC is particularly effective in 

eliminating noise or irrelevant variability in spectral 

data, which could obscure the detection of adulterants 

such as dry bread powder. Following OSC, standard 

normal variate (SNV) transformation was implemented. 

SNV reduces scattering effects that may arise from 

inconsistencies in sample morphology or particle size, 

ensuring that the spectral data are more uniform and 

interpretable across different samples [37]. 

Additionally, extended multiplicative scatter correction 

(EMSC) was applied to further correct for scatter 

variations while incorporating adjustments for physical 

and chemical interactions affecting the absorbance 

spectra [38]. 

The preprocessing strategy also included smoothing 

techniques to reduce noise and enhance signal clarity. A 

median filter was first employed to remove outlier 

spikes, followed by Savitzky-Golay smoothing, which 

was applied in both the first (D
1
) and second (D

2
) 

derivative forms to further improve peak resolution. The 

Savitzky-Golay algorithm, which fits successive 

polynomial functions to localized spectral segments, is 

particularly useful for reducing random noise while 

preserving important features such as peak intensity and 

width. By applying D
1
 and D

2
 derivatives, baseline 

shifts were effectively corrected, and overlapping 

spectral peaks were resolved, making it easier to 

distinguish between pure and adulterated cinnamon 

samples [34]. The combination of these preprocessing 

methods enabled the generation of a clean and reliable 

dataset, suitable for subsequent multivariate analysis, 

particularly in the context of the Partial Least Squares 

Regression (PLSR) model [39]. 
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Fig 3. Spectra and quantification models (pure cinnamon and adulterated with dry bread powder) developed by PLSR, with (a, b) no 

preprocessing, (c, d) SNV with Savitzky-Golay D1, (e, f) EMSC with Savitzky-Golay D2, (g, h) OSC with Detrending. 

 

In addition to scatter correction and smoothing, the 

preprocessing approach involved detrending to address 

any remaining baseline drifts. Detrending removes 

systematic baseline variations that may occur over the 

course of spectral data collection, particularly when 

dealing with complex matrices like powdered food 

products. This step was essential for ensuring that the 

PLSR model could accurately predict adulteration levels 

without interference from baseline noise. The final 

preprocessing pipeline consisted of a combination of 

OSC, SNV, EMSC, and derivative transformations, 

followed by mean-centering of the spectral data. These 

preprocessing techniques were chosen based on their 

proven effectiveness in previous studies and were fine-

tuned to achieve optimal performance for this specific 

dataset [40–42]. 

Fig 3. illustrates the effect of preprocessing methods 

on pure cinnamon and cinnamon adulterated with dry 

bread powder. The dataset was divided into 70% 

calibration (n=84 samples) and 30% validation (n=36 

samples) sets to ensure robust model training and 

testing. The grouping of data points in the scatter plot 

reflects the distinct adulteration levels (0–30% w/w), 

with each cluster representing a specific concentration. 

The PLSR model utilized 10 latent variables, selected 

based on minimizing the root mean square error 

(RMSE) of cross-validation. 

The processed data were validated using k-fold 

cross-validation (k=5) to assess the predictive capability 

of the PLSR model, confirming the preprocessing 

approach's impact on enhancing model accuracy and 

robustness. The regression coefficients (slope = 0.98, 

offset = 0.51) indicate strong agreement between 

predicted and reference values (R² > 0.90). 

 

2.4. Partial least squares regression (PLSR) 

 

In this study, Partial Least Squares Regression 

(PLSR) was employed to establish a relationship 

between the spectral data and the level of adulteration in 

cinnamon powder samples. PLSR is widely used in 

chemometrics due to its ability to handle collinear and 

high-dimensional spectral data while predicting the 

concentration of target compounds. By projecting both 

the spectral matrix (X) and the adulteration levels (Y) 

into a new latent space, PLSR simplifies the complex 

relationship between the two variables, allowing for 

robust calibration models. This approach was chosen 

because of its effectiveness in handling multivariate 

data with overlapping spectral regions, as well as its 

ability to deal with noise and variability in spectral 

measurements [43]. One key factor in improving the 

accuracy of PLSR models is variable selection, which 

focuses on identifying the most relevant spectral 

regions. By excluding non-informative variables, the 

model is refined, improving both its predictive power 

and stability [44]. 

The performance of the developed PLSR models 

was evaluated using several statistical metrics. The 

calibration model’s accuracy was assessed through the 

correlation coefficient (R²), which measures the 

goodness of fit between the predicted and actual 

adulteration levels. Additionally, the root mean square 

error (RMSE) was calculated for both the calibration 

(RMSEC) and prediction (RMSEP) datasets. Lower 

RMSE values indicate a more accurate and reliable 

model, while higher R² values suggest better predictive 

capability. Cross-validation techniques were also 

applied to minimize overfitting, ensuring that the PLSR 

models would generalize well to unseen data. This 

combination of metrics provided a comprehensive 

evaluation of model performance, confirming the 

effectiveness of the PLSR approach in predicting 

adulteration levels based on spectral information [45]. 

 

3. Results and discussion 

 

3.1. Spectral features of the samples  

 

In Fig 4., raw spectra of samples including pure 

cinnamon powder, soybean powder, hazelnut shell 

powder, and dry bread powder in the range of 4000 – 

400 cm-1 are shown. The differences between the 

spectra are attributed to the transmittance associated 

with various functional groups, which can increase or 

decrease depending on the sample composition. The 

absorption bands of water, carbohydrates, proteins, and 
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lipids can explain this spectral treatment [46]. The 

known troughs in cinnamon spectra, corresponding to 

the stretching vibrations of C=O, C=C, and OH in 

aromatic compounds are approximately located at 1678 

cm−1, 1626 cm−1, 1450 cm−1, and 1289 cm−1 [47]. 

Two prominent transmittance troughs in the nearby 

region of 2800 cm−1 in dry soybean suggest the 

symmetric stretching of fatty acid CH2 groups [48]. For 

hazelnut shell powder, valleys at ~2924 cm−1, ~2845 

cm−1, ~1709 cm−1, and ~1613 cm−1 correspond to the 

vibrations of the alpha-hydroxy group (Alpha-CH), 

aromatic carbonyl/carboxyl C=O stretching, and 

aromatic C=C ring stretching, respectively [49]. The 

valley near 1373 cm−1 in dry bread powder is attributed 

to sulfone, a derivative of wheat flour [50]. As shown in 

Fig 4., the chemical composition of the investigated 

samples makes it difficult to distinguish between pure 

cinnamon powder and adulterated samples with the 

naked eye. This is because the spectra of all the samples 

appear very similar, with nearly parallel peaks. 

To build upon this analysis, it is important to 

compare these findings with similar studies on food 

adulteration and spectral analysis. A similar study 

observed distinct spectral features in various food 

powders, demonstrating that FTIR (Fourier-transform 

infrared) spectroscopy can effectively identify 

adulterants in food products [46]. In the current study, 

while the transmittance spectra for adulterated and pure 

cinnamon powder appear nearly identical, small 

differences in peak intensities and locations indicate the 

potential for advanced multivariate analysis techniques, 

such as PCA (Principal Component Analysis) or PLS-

DA (Partial Least Squares Discriminant Analysis), to 

distinguish these samples more effectively. 

Another study confirmed that the presence of C=O 

and OH stretching vibrations in cinnamon is a reliable 

marker for the identification of pure samples [47]. 

However, the overlapping peaks with adulterated 

samples, as seen in this study, indicate that visual 

differentiation is insufficient. Similarly, a research 

observed that hazelnut shell powder contains strong 

aromatic C=C and carbonyl groups, which can interfere 

with identifying certain adulterants [51]. 

In conclusion, while the spectral analysis shows 

similarities across samples, more refined data analysis 

methods can provide higher accuracy in distinguishing 

pure and adulterated samples. This comparison also 

highlights the need for complementary techniques like 

NIR (near-infrared) spectroscopy, which could further 

improve adulteration detection. 

 

  

(a) (b) 

  

(c) (d) 

Fig 4. Transmittance spectrum of (a) pure cinnamon powder, (b) soybean powder, (c) hazelnut shell powder, and (d) dry bread powder samples.  

 

3.2. Evaluation of PLSR model performance 

 

Based on a literature review, a PLSR model is 

considered suitable when it has a high coefficient of 

determination, low RMSE (<10%), and an R
2
 value 

greater than 0.9 [52,53]. Based on the results (shown in 

Tables 2-4), the PLSR model demonstrated a high value 

of correlation coefficient of calibration (R2c) and a low 

root mean squared error of calibration (RMSEC) for all 

adulterations (R2c > 0.97 and RMSEC< 5%). However, 
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it performed poorly in predicting adulterations, except 

for soybean powder (with an R
2
p value of 0.938 and an 

error of approximately 9%). For other adulterants, the 

R2p value was below 0.900 and the RMSEP was above 

14%. These results highlight the importance of using 

preprocessing methods to enhance the accuracy of fraud 

prediction. In the following section, the effect of 

preprocessing methods on performance of the PLSR 

model for predicting the level of frauds is investigated. 

These findings are consistent with other studies that 

have highlighted the challenge of achieving robust 

prediction for multiple adulterants without 

preprocessing techniques. For instance, Tan et al. (2024) 

reported similar difficulties in predicting adulteration in 

cumin powder without applying spectral preprocessing 

methods [54]. Studies like the one conducted by 

Khodabakhshian et al. (2023) also emphasize that while 

PLSR models can yield high calibration accuracy, the 

prediction accuracy often depends heavily on the use of 

preprocessing techniques to reduce noise and enhance 

the quality of the spectral data [34]. Thus, as seen in the 

present study, the relatively low predictive performance 

for most adulterants supports the argument that 

preprocessing methods are crucial for improving fraud 

detection accuracy in spectroscopy-based models. This 

will be further explored in the following section. 

 

3.3. Effect of preprocessing methods on PLSR model 

 

In this section, various preprocessing techniques – 

including 14 methods – and their effects on the PLSR 

model were investigated. The evaluation results of the 

PLSR model and the PLSR model combined with 

preprocessing methods for adulterated samples are 

presented in Tables 2-4. 

 
Table 2. The results of PLSR for different preprocessing techniques (cinnamon powder adulterated with hazelnut shell powder)  

NO. Preprocessing Factor R2
c RMSEC (%) R2

p RMSEP (%) 

1 None 15 0.993 2.823 0.867 14.800 

2 OSC 5 0.995 2.355 0.971 7.571 

3 SNV 18 0.996 1.562 0.841 15.827 

4 EMSC 15 0.995 2.042 0.873 14.026 

5 Detrending 15 0.995 2.212 0.881 14.063 

6 Median filter 17 0.997 2.062 0.832 16.146 

7 Savitzky-Golay D1 16 0.999 0.945 0.782 19.642 

8 Savitzky-Golay D2 15 0.999 1.258 0.632 25.531 

9 OSC, Detrending 6 0.995 2.756 0.978 7.683 

10 SNV, Median filter 16 0.998 1.563 0.846 15.892 

11 SNV, Savitzky-Golay D1 15 0.999 1.405 0.768 18.376 

12 SNV, Savitzky-Golay D2 15 0.997 1.782 0.551 25.340 

13 EMSC, Median filter 16 0.997 1.335 0.893 13.006 

14 EMSC, Savitzky-Golay D1 16 0.998 1.582 0.773 18.621 

15 EMSC, Savitzky-Golay D2 17 0.998 1.593 0.571 25.367 

 

With this vision, in cinnamon powder adulterated 

with hazelnut shell powder, the orthogonal signal 

correction (OSC) method with detrending (Fig 3g, h) 

yielded the most accurate prediction results, with an R
2

p 

value of 0.978. It was able to estimate the level of 

hazelnut shell powder in cinnamon powder with an error 

of approximately 7%. Following OSC with detrending, 

OSC alone produced the second-best result with, an R
2

p 

value of 0.971. The other results can be seen in Table 2.  

It is worth noting that although models with a higher 

number of latent factors often show better fitting 

performance (higher R²c and lower RMSEC), they are 

more prone to overfitting and multicollinearity, 

especially when dealing with high-dimensional spectral 

data. In contrast, reducing the number of factors 

generally leads to higher prediction errors (e.g., 

increased RMSEP), yet it also simplifies the model and 

reduces the dimensionality of the data matrix, which is 

desirable for robust model interpretation and 

generalizability. Therefore, a trade-off must be made 

between model complexity and predictive performance. 

For instance, in Table 2, while the raw data (no 

preprocessing) model used 15 factors and yielded a 

relatively high R²c (0.993), its prediction performance 

(R²p = 0.867) was lower than that of OSC with 5 factors 

(R²p = 0.971). This indicates that using fewer factors 

with effective preprocessing (like OSC or OSC with 

detrending) can lead to more accurate and stable 

predictions despite lower apparent model fit during 

calibration. 

Consequently, researchers must strike a balance 

between the number of latent variables and prediction 

accuracy. A model using 5–6 factors with lower 

RMSEP and higher R²p (such as OSC and 

OSC+Detrending) is often preferable over a highly 

fitted model using 15–17 factors with worse prediction 

errors, due to the risk of overfitting and reduced 

generalizability. 



  
R. Khodabakhshian et al. /Innovative Food Technologies 13(1)(2025)1-12  8 

Table 3. The results of PLSR for different preprocessing techniques (cinnamon powder adulterated with soybean powder)  

NO. Preprocessing Factor R2
c RMSEC (%) R2

p RMSEP (%) 

1 None 13 0.991 3.095 0.938 8.537 

2 OSC 5 0.985 3.978 0.971 6.169 

3 SNV 11 0.993 2.917 0.963 7.352 

4 EMSC 8 0.989 3.411 0.951 7.638 

5 Detrending 10 0.988 3.587 0.932 8.922 

6 Median filter 10 0.992 3.064 0.951 7.992 

7 Savitzky-Golay D1 12 0.995 2.440 0.967 7.265 

8 Savitzky-Golay D2 12 0.991 3.101 0.942 8.230 

9 OSC, Detrending 5 0.987 3.714 0.981 5.773 

10 SNV, Median filter 9 0.993 3.023 0.951 7.393 

11 SNV, Savitzky-Golay D1 11 0.995 2.698 0.963 6.696 

12 SNV, Savitzky-Golay D2 15 0.999 0.853 0.941 8.680 

13 EMSC, Median filter 10 0.993 2.858 0.969 6.597 

14 EMSC, Savitzky-Golay D1 11 0.994 2.672 0.964 6.782 

15 EMSC, Savitzky-Golay D2 16 0.999 1.015 0.931 9.279 

 
Table 4. The results of PLSR for different preprocessing techniques (cinnamon powder adulterated with dry bread powder)  

NO. Preprocessing Factor R2
c RMSEC (%) R2

p RMSEP (%) 

1 None 12 0.972 4.488 0.811 14.159 

2 OSC 10 0.971 4.518 0.882 11.287 

3 SNV 15 0.994 1.767 0.878 11.500 

4 EMSC 12 0.990 2.971 0.886 11.069 

5 Detrending 11 0.981 4.010 0.864 12.109 

6 Median filter 13 0.984 3.653 0.858 12.360 

7 Savitzky-Golay D1 15 0.997 1.650 0.552 22.897 

8 Savitzky-Golay D2 3 0.321 25.880 0.212 30.996 

9 OSC, Detrending 11 0.982 3.708 0.900 9.972 

10 SNV, Median filter 12 0.988 3.098 0.874 11.626 

11 SNV, Savitzky-Golay D1 12 0.987 3.100 0.771 15.716 

12 SNV, Savitzky-Golay D2 2 0.332 25.678 0.195 31.107 

13 EMSC, Median filter 12 0.989 3.169 0.889 10.826 

14 EMSC, Savitzky-Golay D1 15 0.989 1.122 0.793 14.796 

15 EMSC, Savitzky-Golay D2 3 0.351 25.316 0.115 31.266 

 

As emphasized in section 2.3, we employed 

preprocessing methods to increase the accuracy of the 

prediction models. After examining the results shown in 

Table 2, we discovered that certain preprocessing 

methods, such as SNV, median filter, and SNV with 

median filter, underperformed when compared to the 

un-preprocessed data of adulterated cinnamon powder 

and hazelnut shell powder. Furthermore, some 

preprocessing methods, such as Savitzky-Golay D
2
, 

EMSC with Savitzky-Golay D
2
, and SNV with 

Savitzky-Golay D
2
, had a significantly negative impact 

on prediction accuracy (Table 2). The poorest result was 

obtained using SNV Savitzky-Golay D
2
 which yielded 

an R
2

p value of 0.551. 

Regarding cinnamon powder adulterated with 

soybean powder, almost all of preprocessing methods 

demonstrated suitable performance and improved the 

R
2

p value of the PLSR models. In some cases, such as 

detrending and EMSC with Savitzky-Golay D
2
, the 

accuracy was lower compared to the un-preprocessed 

data (Table 3). However, in this case, OSC with 

detrending showed the highest accuracy in prediction, 

with an R
2

p value of 0.981. It was able to estimate the 

level of soybean powder in cinnamon powder with an 

error of approximately 6%. Additionally, OSC produced 

the second-best results with an R
2

p value of 0.971. 

Furthermore, several methods including EMSC, median 

filter, and SNV with median filter illustrated similar 

results (R
2

p = 0.951) (Table 3). 

For cinnamon powder adulterated with dry bread 

powder (Table 4), approximately half of the 

preprocessing methods had a negative effect, with some 

cases showing a significant negative impact (such as 

Savitzky-Golay D
2
, SNV with Savitzky-Golay D

2
, and 
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EMSC with Savitzky-Golay D
2
, resulting in an R

2
p < 

0.22). The poorest prediction accuracy was obtained 

using EMSC with Savitzky-Golay D
2
 with an R

2
p value 

of 0.115 and an RMSEP of 31.266% (Fig 3e, f). 

However, in other cases, the preprocessing methods 

improved prediction accuracy compared to the un-

preprocessed spectra of adulterated samples. The OSC 

with detrending method yielded an acceptable with a 

R
2

p value of 0.900 and an RMSEP=9.972%).  
 

3.4. Comparison of preprocessing methods 
 

It is important to keep in mind that the ultimate goal 

of a chemometrician is to develop a reliable model that 

can accurately predict results. As observed earlier, most 

preprocessing methods had a positive effect on 

prediction results and improved prediction accuracy. 

However, in some cases, this effect was negligible, and 

in some cases, it was significant. Some methods showed 

worse results than un-preprocessing data. Our results 

indicated that preprocessing techniques play a crucial 

role in enhancing the predictive performance of the 

model, but the effectiveness of each method varied. The 

OSC (Orthogonal Signal Correction) combined with 

detrending proved to be the most effective technique, 

reducing the prediction error to a range of 5-10%. This 

high accuracy suggests that OSC can effectively remove 

uninformative variation from the spectral data, making 

it highly suitable for this specific application. On the 

contrary, methods such as EMSC (Extended 

Multiplicative Signal Correction) with Savitzky-Golay 

D
2
 did not perform well across the board. This result 

aligns with other studies that indicate the potential 

limitations of certain preprocessing techniques in 

handling complex datasets. For instance, a study by Liu 

et al. (2018) also reported poor results using EMSC in 

the context of powdered food adulteration, attributing 

the failure to the method's inability to adequately 

account for baseline shifts and noise [55]. 

When comparing our findings with those of Wu et 

al. (2023) and other related studies, we found that 

preprocessing methods such as MSC (Multiplicative 

Scatter Correction) and SNV (Standard Normal Variate) 

tend to enhance predictive accuracy, particularly in 

cases involving low levels of adulteration [56]. 

However, in our study, the application of MSC was not 

as effective as OSC, which might be due to the specific 

characteristics of cinnamon powder and the adulterants 

used (e.g., soybean powder, hazelnut shell powder). 

Similar conclusions were drawn by Khodabakhshian et 

al. (2022), who emphasized that the performance of 

preprocessing methods depends on the type of 

adulterant and the specific spectral properties of the 

sample [43]. 

This variability in effectiveness highlights the 

importance of selecting the appropriate preprocessing 

technique based on the characteristics of both the 

sample and the adulterant [57]. While prior studies offer 

valuable insights, relying solely on their results can lead 

to suboptimal outcomes. Our study confirms that 

preprocessing techniques must be evaluated and tailored 

to the specific adulteration scenario at hand, as 

supported by findings in related research. In summary, 

although there is a general consensus on the positive 

impact of preprocessing on prediction accuracy, our 

study demonstrates that not all methods are equally 

effective. Therefore, it is critical for researchers to 

carefully assess and select the most suitable 

preprocessing techniques for their specific case studies. 
 

4. Conclusions 
 

In this study, we employed FTIR spectroscopy 

combined with multivariate analysis to predict 

adulteration levels in cinnamon powder and evaluated 

the impact of different data preprocessing methods on 

prediction accuracy. We evaluated the quantitative 

performance of 14 preprocessing techniques and 

assessed their efficacies on the prediction accuracy of 

the PLSR model. According to the results, OSC with 

detrending demonstrated the best results for all of the 

adulterants (soybean powder, hazelnut shell powder, 

and dry bread powder), with an R
2

p value of greater than 

0.90 and an RMSEP value of under 10% for predicting 

cinnamon powder adulteration. On the other hand, 

EMSC with Savitzky-Golay D
2
 showed the lowest 

accuracy in predicting adulterants with an RMSEP 

range of 9-32%. However, in comparison with the other 

adulterants, the accuracy of soybean powder prediction 

was slightly superior. In summary, the PLSR model 

based on OSC with detrending could predict cinnamon 

powder adulteration with high accuracy and this 

combination performed best in all adulterants, while 

other integrations reduce the model’s performance 

compared to using un-preprocessed data. Furthermore, 

since the effectiveness of preprocessing approaches can 

vary across different adulterants, selecting an 

appropriate technique is essential; otherwise, it may 

compromise the accuracy of fraud prediction. Given the 

nature of soft computing techniques, it is recommended 

that future research investigate the use of artificial 

neural networks and other machine learning methods on 

predictive accuracy. 
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