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Abstract 

 Osmotic dehydration of fig fruits (cv. Sabz) in ternary solution of water, sucrose and sodium chloride at different 

solution concentrations, temperature and process durations were analyzed. A comparative approach was made 

between artificial neural network (ANN) and response surface methodology (RSM) to predict the mass transfer 

parameters. Results showed that all independent variables positively decreased the weight meaning that increasing 

each factor resulted in increasing weight loss and this relationship was linear. Osmo-dehydrated figs had better quality 

compared to samples without osmosis. All four independent variables explained 94% of the weight loss, 90% moisture 

content reduction and 89% of the solid gain. The determined optimum processing conditions were temperature of 

60°C, sucrose concentration of 70%, sodium chloride concentration of 5% and immersion time of 5h. The results 

showed that properly trained ANN model is found to be more accurate in prediction as compared to RSM model.  
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Nomenclature 

x1 Temperature (°C) Xcp Real value of an independent variable at the 
center point 

x2 Sucrose concentration (%) n 

Variation in a unit for the dimensionless 
value of variable k  

x3 Sodium chloride concentration (%) xk and xj  Variables in equation 

x4 Contact time (h) β0 Model intercept coefficient 

y1 Moisture loss (%) βj Interaction coefficients of linear terms 

y2 Weight reduction (%) βjj Interaction coefficients of quadratic terms 

y3 Solid gain (%) Βkj Interaction coefficients of second order terms 

WR Weight reduction (%) 

ek 

Error 

ML Moisture loss (%) RMSE Root mean square error 

SG Solid gain (%) MAE Mean absolute error 

xi Initial fruit moisture on wet basis (gwater/g) MAPE Mean absolute percentage error 

xf Final fruit moisture on wet basis (gwater/g) MSE Mean square error 

wi Initial fruit mass (g) X2 Chi square statistics 

wf Final fruit mass (g) Yi,e Experimental value of the ith experiment 

C Mass concentration (g/m3) Yi,p
 Predicted value of the ith experiment by 

model 

xk Dimensionless value of an independent 
variable 

Ye Average value of experimentally determined 
values 

Xk Real value of an independent variable n (in error 
prediction)  

Number of experiments 

    

1. Introduction 

Fig is one of the earliest cultivated fruits that some of its varieties are dried and stored for later consumption. Fig is a 

very rich source of carbohydrates, fiber, minerals, vitamin, amino acids and antioxidants; so it is highly important in 

the diet [1].  

With the production of 98,990 tons of figs and the cultivated area of 56,292 hectares in 2019, Iran is known as the 

fifth producer of figs in the world [2]. In 2020, the commercial value of Iran's fig product was 33.4 million dollars 
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(fresh and dried figs) [3]; Therefore, figs have great economic value for Iran's agriculture. On the other hand the 

deterioration of fresh figs due to its perishability and the lack of proper storage conditions as well as inappropriate 

packaging and transportation conditions causes a lot of damage to this product [1]. Therefore, choosing a proper 

method for processing of fresh products, such as drying, can be a suitable solution to reduce fig loss and waste.  

Conventional air drying; probably the oldest method used to extend the shelf life of fruits, is a simultaneous heat and 

mass transfer process; however, this method requires high temperatures and time, resulting in a significant degradation 

of important nutrient compounds and alterations in the color of the final product [4]. 

A pretreatment, such as osmotic dehydration, may present in the early stages of dehydration a higher rate of water loss 

than the rate provided by air-drying processes and can be used to reduce the initial water content, reducing total 

processing and air-drying time [5-7]. The osmotic process has received considerable attention as a pre-treatment since 

it reduces energy consumption and can improve food quality [8]. Moreover; this process helps inhibition of enzymatic 

browning, better retention of color and flavor with reduced water activity [9]. This dehydration process can be done 

in binary  (water/sugar) [10] or ternary (water, sugar and salt) systems [5]. Different aspects of osmotic dehydration 

of food products have been investigated in the literature among which studies performed on ultrasound assisted 

osmotic dehydration of kiwi fruit [9], persimmon fruit [11], plum [4, 12], garlic slices [13], Cucumber slices [14], 

tomato [15], bioactive compounds, antioxidant capacity, color and texture of fruits and vegetables [16] and generating 

functional foods [17, 18] are worth mentioning. 

Several factors can affect the osmotic dehydration process. Most importantly, concentration and temperature of the 

osmotic solution, type of solute used to prepare the osmotic solution, shape and size of the material, mass and surface, 

the ratio of product to solution, contact time between product and osmotic solution, and agitation speed [7, 19-22].  

Some authors have developed models to predict mass transfer kinetics of an OD process [20, 23-27]. Response Surface 

Methodology (RSM) is a widely and effectively used method in process and product improvement. RSM is a collection 

of statistical techniques for designing experiments, building models, evaluating the effects of factors and searching 

for optimum conditions. It is widely also employed for multivariable optimization studies. Studies on the optimized 

conditions for the osmotic dehydration process using RSM have been published for papaya, yam bean, potato, diced 

pepper, and banana [22, 26, 28-30].  Non-linear models have been suggested in food processing due to the nonlinear 

behavior of food products. Artificial Neural Network (ANN) models are widely used for prediction of mass transfer 

in the osmotic dehydration phenomenon [7, 31-33]. ANN is a powerful modeling technique that offers several 

advantages over conventional modeling techniques because it can model based on no assumptions concerning the 

nature of the phenomenological mechanisms and understanding the mathematical background of problem underlying 

the process as well as the ability to learn linear and nonlinear relationships between variables directly from a set of 

examples [31, 34]. ANN models can be classified into two classes: supervised networks and unsupervised networks. 

Supervised networks require a training algorithm and a training data set to adjust the connection weights, while 

unsupervised networks can adjust weights by themselves to achieve the required results without using any training 

algorithm. Supervised networks are mostly used for classification, prediction, and function approximation, while 
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unsupervised networks are used for clustering and content addressable memory. For prediction and control of food 

processing operations, supervised networks are suitable [32].  

No study on osmotic dehydration of Fig fruits using ternary system is still found in the literature. The objective of this 

work was to determine the effect of temperature, sucrose and sodium chloride concentration and immersion time on 

moisture loss (WL), solid gain (SG) and weight reduction (WR) during osmotic drying of fig fruits. A number of 

experiments were carried on based on central composite rotational design (CCRD) to collect the output variables. The 

performance of ANN was then compared with the performance of RSM models.  

2. Materials and Methods 

Black Fig fruits were provided by Fig Research Station (Estahban, Fars Province, Iran). Moisture content was 

determined by oven drying at 105ºC for 24 h.  The osmotic solution used in each experiment was prepared by mixing 

food grade sucrose and sodium chloride with distilled water. The concentrations of sugar and salt, temperature of the 

solution and the time of immersion for each experimental run were designed based on a CCRD with four independent 

variables and 31 runs. The osmotic solution to fruit ratio was 4:1 to avoid an excessive dilution of the osmotic solution, 

maintain the osmotic solution to fruit ratio constant and maintain a good mixing in the osmotic dehydration apparatus 

[5]. Over-dilution of osmotic solution can reduce the mass transfer coefficient and increase the processing time 

throughout the experiment. Each experimental group included five random individually weighed samples. The 

experiment was carried out in a water bath equipped with a mechanical stirrer to maintain uniform temperature and 

concentration throughout the experiment. To avoid fruit decomposition and cooking, the temperature used was in the 

range of 30-70 °C. After removal from the solution, the dehydrated samples from each group were drained and blotted 

with absorbent paper to remove the excess solution. Weight and moisture content of the samples were measured 

individually and used to calculate the response variables of the experimental planning, including moisture loss (ML), 

solid gain (SG), and weight reduction (WR) according to Eqs. 1, 2 & 3, respectively [35]: 

 

𝑀𝐿(%) =
𝑤𝑖𝑋𝑖−𝑤𝑓𝑋𝑓

𝑤𝑖
× 100             (1)   

𝑆𝐺 (%) =  
[𝑤𝑓.(1−𝑋𝑓)−𝑤𝑖.(1−𝑋𝑖)]

𝑤𝑖
× 100   (2) 

𝑊𝑅(%) =
𝑤𝑖−𝑤𝑓

𝑤𝑖
× 100                      (3) 

After removal from the osmotic solution, the dehydrated sample was discharged and transferred to a circulating air 

dryer. The drying temperature was 60ºC and the speed of air was 1.5 m/s.  

2.1. Experimental design 

RSM is an empirical statistical modeling technique that is employed for multiple regression analysis using quantitative 

data obtained from properly designed experiments to solve multivariate equations simultaneously [31]. A CCRD with 
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four factors at five levels was used to evaluate each main effect as well as the interaction effects. The four independent 

variables were temperature (x1), sucrose concentration (x2), salt concentration (x3), and time of immersion (x4). The 

CCRD included 31 experiments with 7 central points. Each independent variable was coded at five levels (-2, -1, 0, 1 

and 2). Coding of the variables was done according to Eq. 4: 

𝑥𝑘 =
𝑋𝑘−𝑋𝑐𝑝

∆𝑋𝑘
    𝑖 = 1, 2, 3, … . . 𝑛      (4) 

The obtained data were analyzed to fit a polynomial equation to each dependent variable (ML, WR and SG). A 

quadratic model, which also includes the linear model, can be described follows: 

𝑦 =  𝛽0 + ∑ 𝛽𝑗
𝑛
𝑘=1 𝑥𝑘 + ∑ 𝛽𝑗𝑗

𝑛
𝑗=1 𝑥𝑘

2 + ∑ ∑ 𝛽𝑘𝑗
𝑛
,𝑗=2𝑖 𝑥𝑘𝑥𝑗 + 𝑒𝑘    (5) 

The experimental data were analyzed using multiple regressions, and the significance of regression coefficients was 

evaluated by F-test. Modeling was started with a quadratic model, including linear, squared, and interaction terms, 

and the model adequacies were checked in terms of the values of R2, adjusted R2, and prediction error sum of squares. 

SAS software (1999) was used to perform stepwise procedure to find significant terms and simplify the models. The 

analysis of variance (ANOVA) and regression coefficient calculation were carried out using Microsoft Excel. The 

regression coefficients were used to generate response surface plots from the regression models. MATLAB software 

(ver. 8.5.0, R2015a) was used to build ANN models.  

2.2. Optimization 

The osmotic process condition was optimized using the desirability function (Myers et al. 2016). The general approach 

to analyzing the desirability function involves the transformation of each estimated response, variable Yi, to a 

desirability value, di, where 0 ≤ di ≤ 1. The transformed response, di, can have many different shapes. A zero response 

represents a completely undesirable response, whereas a response of one represents the most desirable response. The 

overall desirability combines the di, of several responses using the geometric mean for simultaneous optimization of 

the responses (Eq. (6)): 

𝐷 = (𝑑1 ∗ 𝑑2  ∗ 𝑑3  ∗ … … . .∗ 𝑑𝑛)
1

𝑛        (6) 

 

where di indicates the desirability of the response and n is the number of responses in the measure [36]. In the present 

study, a desirability function was developed to maximize ML and WR and minimize SG. Optimization was performed 

using Design Expert program version 12.0 (Statease Inc., Minneapolis, USA, trial version). 

 

2.3. Sensory evaluation 

Trained sensory panelists rated the main sensory properties of the osmotic dehydrated figs (representative samples 

corresponding to OD optimized conditions, as estimated by RSM) as well as control dehydrated samples (without 
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osmotic pretreatment). Scores were given for each parameter separately on a 1–9 intensity scale (1, the lowest 

intensity–9, the highest intensity): red-purple color, shine, shrinkage, hardness, adhesiveness, chewiness, sweetness 

and saltiness and overall acceptability [15]. 

2.4. Artificial neural network (ANN) modeling 

AANs can be used as an alternative to polynomial regression-based modeling tools that allow modeling of complex 

nonlinear relationships. A widely used ANN model for predicting and controlling food processing operations is a 

multi-layer feed forward neural network (Fig. 1). This network can learn nonlinear and complex relationships using a 

training algorithm with a set of input-output pairs [32]. A model was developed to predict the percentages of ML (y1), 

SG (y2) and WR (y3) of osmodehydrated fig fruits based on four input variables; process temperature (x1), sucrose 

concentration (x2), sodium chloride concentration (x3), and immersion time (x4): 

Data were randomized and divided into three subsets for cross validation. The first subset was the training set (70%), 

which was used for computing the gradient and updating the network weights and biases. The second subset was the 

cross validation set (15%), which was used to prevent over-fitting. The last subset was the test set (15%), which was 

not used during the training but to examine the network’s generalization capability [37]. Due to the different ranges 

of each input and each output, the inputs and outputs were normalized into the interval [-1, 1] before feeding into the 

network. The training process was run by trial- and- error search method until a minimum of root mean square error 

(RMSE) was reached in the validation process. The performance of the trained network was estimated based on the 

accuracy of the neural network to produce outputs that are equal or near to the target (predicted) values.  

The model was designed using the ANN toolbox in MATLAB (ver. 8.5.0, R2015a) and Levenberg-Marquardt 

(Trainlm) algorithm. Trainlm is a network training function that updates weight and bias states according to 

Levenberg-Marquardt optimization. A logarithmic sigmoid transfer function (logsig) was used in the first layer of the 

network (Eq. 7), and a linear transfer function (purelin) was used in the second layer (Eq. 8): 

𝑙𝑜𝑔𝑠𝑖𝑔(𝑥) =  
1

1+𝑒𝑥𝑝−𝑥    (7) 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥    (8) 

 There are no strict rules for deciding which hidden layers and nodes are needed. To our knowledge, one hidden layer 

is sufficient though, there are subtle benefits to using two hidden layers. Therefore, we set the number of hidden layers 

to 1 while checking the number of neurons in the hidden layer. For this purpose, the number of 1, 5, 10, 15 and 20 

neurons were used for neural network modeling and the ability of the network in predicting osmotic parameters was 

estimated. 
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2.4. Models evaluation parameters 

In order to evaluate the goodness of fitting and prediction accuracy of the constructed models, error analyses (root 

mean square error (RMSE), mean absolute percentage error (MAPE), and and correlation coefficients (R2) were 

carried out on the experimental and predicted data (Eqs. 9-11). The formulas used for the error analyses are listed in 

Table 1.  

 

Table 1- Error functions and the corresponding equations 

توابع خطا و معادلات مربوطه - (1)جدول   

3. Results and Discussion 

3.1. RSM modeling  

According to the outcome of CCRD, we found the optimal combination and conducted experiments to investigate the 

effect of process parameters on ML, WR and SG of osmotic dehydrated samples. Linear, interactive and quadratic 

models were fitted to the experimental data to obtain the regression models. Sequential model sum of squares and 

model summary statistics were carried out to check the adequacy of the models. Multiple regression analysis of the 

experimental data yielded second-order polynomial models for predicting ML, WR, and SG. A polynomial regression 

was used to test the effect of several factors (each time the effect of two independent variables on one dependent 

variable was investigated) and based on the results, the following models were obtained for each dependent variable 

(Eqs. 12- 14): 

WR = 13.6 +4.07 X1 + 1.75 X2 + 1.30 X3  +2.18 X4 + 2.06 X2 *X4    (12) 

WL = 9.81+ 4.16 X1 + 2.17 X2 +1.44 X3+1.72 X4          (13) 

SG = 11.16 – 1.55 X2 + 1.45 X3 – 2.37 X1
2 – 3.33 X2

2 – 1.67 X4
2 + 1.76 X1* X2                (14) 

                               

The adequacy and fitness of the models were tested by analysis of variance (ANOVA). The results indicated that the 

equation adequately represented the actual relationship between the independent variables and the responses (Table 

2). The ANOVA results for ML, WR and SG showed relatively large F-value, implying that the model is significant 

and the values of Adj R2 greater than 0.600 confirm the model’s adequacy and fitness. The value of standard deviation 

is also low, indicating that the deviations between the experimental and predicted values are low. 

 

Table 2- ANOVA for the experimental results of CCRD 

های حاصل از طرح مرکب مرکزی چرخش پذیرآنالیز واریانس داده -(2جدول )  
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Figures 1-3 display the results of osmotic dehydration. WR was greatly affected by sodium chloride and sucrose 

concentrations, temperature, and soaking time. The effect of temperature on dehydration was greater than that of other 

parameters. All four independent variables had a positive effect on WR. In other words, increasing any of the 

mentioned variables improved WR. The effect of all independent variables on WR was linear. At the highest 

concentration of sucrose (70% w/w) and the lowest amount of sodium chloride (0% w/w), the WR was almost 11%, 

while with the addition of 10% w/w of salt, the amount of WR increased to 17% (Fig. 1a). Fig. 1b shows that the 

largest value of WR could be obtained by the highest amount of sucrose content after 5 h. The effect of sodium chloride 

addition on enhancing the mass transfer of water was significant even at low concentrations (Fig. 1a, 1b, 1c).  

 

Fig. 1: Response surfaces for the WR of fig fruits 

های انجیرهای سطح پاسخ برای کاهش وزن میوهمنحنی -(1شکل )  

 

The regression coefficients indicated that ML is affected by the linear effects of all four independent variables as well 

as the interactions of sucrose content and time of immersion. In other words, ML is favored by increasing the 

concentrations of sodium chloride and sucrose and increasing solution temperature and immersion time (Fig. 2). ML 

varies from 3.35 to 31.3 g/g. The lowest ML is related to lower temperatures and lower sodium chloride contents. 

When temperature increases, the permeability of the cell membrane changes, leading to a better exchange of water, 

sucrose and sodium chloride  in fruits [30]. The response surface of 2a shows that the largest values for ML are at the 

highest concentrations of sucrose (70% w/w) and sodium chloride (10% w/w). The response surface of ML to the 

concentration changes of temperature and sucrose showed that increasing the sugar content may affect ML in a wide 

range of temperature values (Fig. 2b). The maximum immersion time (5 h) and the maximum concentration of sodium 

chloride lead to the largest ML (Fig. 2c).  

 

Fig. 2: Response surfaces for ML of fig fruits 

های انجیرهای سطح پاسخ برای افت رطوبت میوهمنحنی -(2شکل )  

 

Fig. 3 indicates that SG increases with increasing the sodium chloride concentration and its effect on SG is more 

significant than the effect of sucrose. This means that due to the smaller molecules size, more sodium chloride than 

sucrose enters the fruit [5]. In this section of the study, the fig fruits samples were tested and an osmotic solution with 

5% (w/w) of sodium chloride was considered to be the maximum amount of sodium chloride that can be added to the 

osmotic solution without changing the fruit’s natural taste. This result is in agreement with the findings of Rodrigues 

and Fernandes (2007). The maximum SG was found at 50% (w/w) sucrose and 10% (w/w) salt concentrations (Fig. 
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3a). The response surface of SG to changes in temperature and sucrose content showed that the greatest value for SG 

was found at 50ºC and 50% (w/w) sugar. The response surface of SG to changes in temperature and time of immersion 

revealed that higher SG was at 50ºC after 3 h (Fig. 3b).  

The response surface of SG to changes in sugar content and time of immersion showed that a wide range of contact 

time could be used to obtain maximum SG (Fig. 3c), while for response surface of SG to sodium chloride and contact 

time, it can be observed that higher SG is found at the 10% w/w after 3 h (Fig. 3d).  

 

Fig. 3: Response surfaces for the SG of fig fruits 

های انجیر های سطح پاسخ برای جذب ماده جامد میوهمنحنی -(3شکل )  

 

Several factors may affect the infiltration process. This study tested the effects of sucrose and sodium chloride 

contents, temperature, and soaking time in this regard. Similar results have been obtained by other researchers for 

other fruits. These results may differ in the interaction effect of various factors, but all are consistent in terms of the 

effects of temperature, sucrose and sodium chloride content, immersion time, and some other parameters on ML, SG, 

and WR [30].  

Increasing the temperature during the osmotic dehydration of tomato in ternary solutions led to higher water mass 

transfer coefficients [25]. During the osmotic dehydration of carrot cubes, ML increased by increasing the temperature 

[38]. The rapid ML with the increase of solution temperature might be attributed to the plasticizing effect of the cell 

membranes and also to the lower viscosity of the osmotic medium. Rapid ML is due to the large osmotic driving force 

between the dilute sap of the fresh fruit and the surrounding hypertonic solution [32, 39].  

Composition of the osmotic solution has also a direct influence on the osmotic drying kinetics. The results showed 

that the more concentrated dehydration solution is produced, the highest ML will occur. ML and SG of the watermelon 

slabs treated with higher osmotic solution concentration were found to be higher [40], while in the present study, SG 

increased by increasing the sucrose content up to 50%. However, there is an exception in accelerating ML and SG 

when the solution viscosity at high concentrations begins to limit the mobility of the solution, thereby slowing down 

the rate of ML and SG [39]. 

The chemical nature of solutes, molecular weight and interaction effects have also been recognized to influence the 

concentration effects. Low molecular weight (LMW) solutes penetrate more readily than other compounds [39]. It 

seems that LMW osmotic agents can easily penetrate into the cells of fruits and vegetables as compared to HMW 

osmotic agents. When a mixture of sucrose-NaCl was used as the osmotic solution, higher ML were obtained due to 

an apparent synergistic effect of the solutes. In fact, the addition of NaCl to the solution resulted in an increase of the 

osmotic pressure gradients, and thus, higher ML values throughout the osmosis period. Sodium chloride increases the 

driving force of dehydration, lowers water activity and allows a higher rate of penetration into the material due to its 
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low molecular weight [41]. The results of this study are in agreement with the findings of Ispir and Togrul (2009) 

[42]. The increase in immersion time leads to higher ML during osmotic dehydration [42, 43]. The importance of each 

of these parameters to the fig osmotic drying process was determined using the declared contribution or variability. 

The ANOVA explained the temperature, sucrose, sodium chloride and soaking time of 94% for WR, 90% for ML and 

89% for SG, indicating that these values have been selected correctly. Similar results were reported by Abud-Archilla 

et al. (2008) [30].  

3.2. Optimization 

We determined the optimum conditions for the osmotic dehydration of fig to obtain maximum ML and WR and 

minimum SG. Second order polynomial models obtained in this study were utilized for each response in order to 

obtain specified optimum conditions. The results obtained with this experimental design showed that the fitted models 

for ML, WR, and SG were suitable for describing the experimental data. For optimizing the osmotic dehydration, the 

following were considered: temperature (30, 40, 50 & 60°C), sucrose concentration (30, 40, 50, 60 & 70%), sodium 

chloride (0, 2.5 & 5%) and time of immersion (1, 2, 3, 4 & 5 h). The highest levels of temperature (70°C) and sodium 

chloride content corresponding to the coded values of 1 and 2 (7.5 and 10%) were removed from the constraints in 

optimization due to their adverse effects on the final product’s quality.  The main criteria for optimizing the boundary 

conditions were the possible ML and WR, and the minimum SG. Various responses 5, 3, and 3 were used to optimize 

the process conditions for the osmotic dehydration of fig fruits by numerical optimization techniques based on their 

relative contribution to the quality of the final product, including ML, WR, and SG. The desirability approach was 

used to optimize the process variables to meet the criteria. The determined optimum processing conditions were 

temperature of 60°C, sucrose concentration of 70% sodium chloride concentration of 5% and immersion time of 5h; 

according to their respective desirability preferences (Table 3). At these conditions, the WR, ML and SG were obtained 

as 21.81, 24.10 and 3.88% (g/100g of sample), respectively with the overall desirability value of 0.794.   

 

Table 3. Optimization criteria for different independent variables (Temperature, sucrose concentration, sodium 

chloride concentration and immersion time) and responses (ML, WR and SG) for optimum conditions 

های مربوطه وری( و پاسخسازی متغیر مستقل )دما، غلظت سوکروز، غلظت کلرید سدیم و زمان غوطه معیارهای بهینه  -(3جدول )

(ML  ،WR   وSGدر شرایط بهینه ) 

3.3. Sensory evaluation 

A sensory evaluation was performed at the optimized conditions, where the organoleptic quality of fig samples was 

described in terms of red-purple color, shine, shrinkage, hardness, adhesiveness, chewiness, sweetness and saltiness 

and overall acceptability. The intensity scores for the attributes on the hedonic scale for all samples are presented in 

Figure 4. Osmo-dehydrated samples had the higher scores compared to the control one for color, shine and sweetness. 

The scores for shrinkage, hardness, adhesiveness and chewiness were higher in control sample. By inclusion of 5% 
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sodium chloride no salty taste was felt. As far as the overall acceptability scores are concerned, the osmo-dehydrated 

sample was rated higher. It is noteworthy that despite the addition of sucrose to the pretreated samples, 90% of the 

panelists were satisfied with the sweetness of the processed samples. This might be due to the balance created between 

included sucrose and the present organic acid compounds in black figs. Control fig samples were characterized by 

dark color, higher shrinkage, hardness, adhesiveness and chewiness; while samples pretreated with osmotic 

dehydration where judged as pleasant. As mentioned in different studies, flavor/taste and texture characteristics as 

well as primary raw materials and solute used are the main sensory characteristic in sensory evaluation influencing 

the consumer acceptability of osmo-dehydrated fruits [15, 44, 45]. 

 

Fig 4. Sensory scores for the attributes on the hedonic scale (osmo-dehydrated sample at the optimum process 

condition and control sample). Average scores (scale 1-9) for red-purple color (axis 1), shine (axis 2), shrinkage 

(axis 3), hardness (axis 4), adhesiveness (axis 5), chewiness (axis 6), sweetness (axis 7), saltiness (axis 8) and 

overall acceptability (axis 9) 

فرآیند اسمز در شرایط بهینه و شده با پیشگیریآب  های کیفی در مقیاس هدونیک )نمونهامتیازات حسی برای ویژگی -(4شکل )

(،  2(، درخشندگی )محور شماره 1ارغوانی )محور شماره -( برای رنگ قرمز1-9نمونه کنترل(. میانگین امتیازات )مقیاس 

(، شیرینی  6(، قابلیت جویدن )محور شماره 5(، چسبندگی )محور شماره 4، سفتی بافت )محور شماره (3چروکیدگی )محور شماره 

 (9( و میزان پذیرش کلی )محور شماره 8(، شوری )محور شماره 7)محور شماره 

3.4. ANN modeling 

The ANN model was developed using a multilayer perceptron (MLP) with a sigmoid function. The first step in ANN 

modeling was to optimize the NN with minimal dimensions and minimal training and test errors. We trained the 

network using test plans and their respective test yields. The optimal number of neurons in the hidden layer of the NN 

was investigated by varying the number of neurons in the hidden layer and for various combinations of other 

parameters such as learning rate and initialization. The criterion for assessing the performance of the model was the 

minimum RMSE between the experimental and the corresponding predicted values. Examining the results obtained 

regarding the perceptron neural network with the Logsig-Purelin transfer functions with one hidden layer showed that 

the arrangement of 4-10-3, i.e. a network with 4 input variable, 10 nodes in the hidden layer and 3 output variable, 

provided the best results in prediction of ML, WR and SG (Fig 5). This network was able to predict the values of these 

three parameters with the correlation coefficients (R2) of 0.910, 0.910 and 0.883 and the root mean square errors 

(RMSE) equivalent to 0.522, 0.497 and 0.554. Table 4 indicates the data of perceptron neural network with different 

numbers of neurons.  

Results of this study were similar to Aydani’s et al. (2013) findings in which they reported that a network with 5 

inputs, 5 nodes in the hidden layer and 4 outputs has the best results in predicting the final moisture content and solid 

uptake of orange slices [46]. They also showed that this network with a hidden layer and the number of 30 neurons 

was able to predict the water reduction and Brix difference well. In another study, Azadbakht et al. (2018) found that 

a network containing 6 neurons in the hidden layer could successfully predict the energy efficiency (R2 = 0.999) and 

specific energy loss (R2 = 0.871) in osmotic pretreatment of microwae-dried orange slices [47]. Mokhtarian and 
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Tavakolipour (2016) demonstrated that an ANN model with eight neurons in one hidden layer was able to forecast 

water loss and solid gain with R2 values equal to 0.967 and 0.890 where relative error values corresponding to each 

of these factors were estimated at 0.0205 and 0.0872, respectively; in osmotic dehydration of Crookneck squash [48]. 

 

Fig. 5: Structure of multilayer feedforward neural network 

 ساختار شبکه عصبی چندلایه  – (5شکل )

3.5. Comparison of RSM and ANN models 

The ANN and RSM models were compared with regard to their goodness of fitting and prediction accuracy using the 

criteria presented in Table 1. The results of statistical analysis and comparison between RSM and ANN models are 

listed in Table 4. To study the modeling abilities of RSM and ANN models, the values predicted by these models were 

plotted against the corresponding experimental values (Figures 6a to 6c). These figures show the predicted data by 

ANN model were much closer to the line of perfect prediction than those of predicted by RSM models for all three 

dependent variables. Therefore, a significantly higher generalization capacity was observed by the ANN models 

compared to RSM ones. According to Maran et al. (2013) the higher accuracy of ANN models in prediction of osmotic 

dehydration parameters could be due to its universal ability to estimate the nonlinearity of the process, while the RSM 

models are confined to the second order polynomials. On the other hand, a great number of iterative computations are 

performed during generation of ANN models whilst in RSM models only a single step calculation is carried out [31]. 

In this regard, results of the present study are in the range of those previously reported [32, 46, 49]; however, different 

ranges of error and coefficient of determination parameters have provided in the literature. 

Almost all the studies conducted in relation to the prediction of osmotic dehydration parameters using neural network 

have come to the conclusion that ANN approach provides a robust tool   for modeling the osmotic dehydration process 

and that the outputs are remarkably better than conventional mathematical models in predicting the water loss and 

solids gain during this process. However, such operations involve highly complex and non-linear physical mechanism. 

In this regard we can refer to the studies conducted on osmotic dehydration of eggplant [50], pumpkin [51] and fish 

[52].  

 

 

Table 4-Comparison between RSM and ANN models 

   ANNو  RSMهای مقایسه بین مدل-  (4جدول )

 

Fig. 6: Experimental vs. predicted values of RSM and ANN models for a) ML (%), b) WR (%) and c) SG (%) 
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 (%) SGو ج(  (%) WR، ب( (%) MLبرای الف(  ANNو  RSMهای شده توسط مدلبینیمقادیرآزمایشی و پیش – (6شکل )

 

 

4. Conclusions 

This paper investigated the OD process of fig fruits. All four independent variables (temperature, sucrose 

concentration, sodium chloride concentration, immersion time) had significant effect on responses. The use of a 

ternary osmotic solution improved mass transfer compared to the binary osmotic solution. The use of salt increased 

ML and WR, but at high concentrations, it increased SG and made the fruit too salty. The amount of sodium chloride 

that can be added to the osmotic solution without changing the fruit’s natural taste was found to be 5% w/w.  The 

ANOVA results showed a significant effect (P<0.05) of all process parameters on ML and SG. Sucrose and sodium 

chloride content, temperature and immersion time of the sample explained 94% of WR, 90% of ML and 89% of SG. 

These high percentages confirm that the parameters required for the osmotic drying process have been selected 

correctly. The optimal treatment conditions found were a temperature of 60 °C, a sucrose concentration of 70%, a 

sodium chloride concentration of 5%, and a soaking time of 5 h. Under these conditions, ML, WR, and SG were 21.81, 

24.10, and 3.88% (g / 100 g samples), respectively with a desired value of 0.794. We used the experimental data based 

on CCRD in the osmotic dehydration process of fig fruits to model, predict, and generalize the performance of RSM 

and ANN methods. The results showed that the multilayer perceptron (MLP) with sigmoidal function and 10 hidden 

nodes was suitable for predicting WR, ML and SG of fig fruits during the OD process. In both the learning and testing 

processes of ANN model, the error between the predicted and experimental values for ML, WR, and SG was relatively 

small, and r2 for these parameters was high. The ANN model could more accurately predict ML, WR, and SG in range 

of RSM model. In other words, a well-trained ANN model is more accurate in prediction than RSM. 
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Fig. 1: Response surfaces for the WR of fig fruits 
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Fig. 2: Response surfaces for ML of fig fruits 
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d) 

  

Fig. 3: Response surfaces for the SG of fig fruits 
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Fig 4. Sensory scores for the attributes on the hedonic scale (osmo-dehydrated sample at the optimum process 

condition and control sample). Average scores (scale 1-9) for red-purple color (axis 1), shine (axis 2), shrinkage 

(axis 3), hardness (axis 4), adhesiveness (axis 5), chewiness (axis 6), sweetness (axis 7), saltiness (axis 8) and 

overall acceptability (axis 9) 
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Fig. 5: Structure of multilayer feedforward neural network 
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Fig. 6: Experimental vs. predicted values of RSM and ANN models for a) ML (%), b) WR (%) and c) SG (%). 

 

 

 

 

Table 1: Error functions and the corresponding equations 

Error function Equation 

Root mean square error 

𝑹𝑴𝑆𝑬 = √
∑ (𝒀𝒊,𝒆−𝒀𝒊,𝒑)𝟐𝒏

𝒊=𝟏

𝒏
              (Eq. 9) 

Mean absolute percentage error 
𝑴𝑨𝑷𝑬 (%) =

𝟏𝟎𝟎

𝒏
∑ |

𝒀𝒊,𝒆−𝒀𝒊,𝒑

𝒀𝒊,𝒑
|𝒏

𝒊=𝟏       (Eq. 10) 

Correlation coefficients (R2) 
𝑹𝟐 =

∑ (𝒀𝒊,𝒑−𝒀𝒊,𝒆)𝒏
𝒊=𝟏

∑ (𝒀𝒊,𝒑−𝒀𝒆)𝟐𝒏
𝒊=𝟏

                             (Eq. 11) 
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Table 2: ANOVA for the experimental results of CCRD 

 Source ML (%) WR (%) SG (%) 

Coefficients    

B0 13.6*** 8.74*** 11.1*** 

Linear    

B1 4.07*** 4.16*** 0.0449* 

B2 1.75** 2.17*** -1.55** 

B3 1.30* 1.45*** 1.456** 

B4 2.18*** 1.72*** 0.780* 

Quadratics    

B11 0.115 0.766 -2.36*** 

B22 0.235 0.205 -3.32*** 

B33 -0.111 0.0523 0.092 

B44 0.658 0.0359 -1.664*** 

Interactions    

B12 1.40 1.084* 1.756** 

B13 -0.214 -1.13* 0.606 

B14 -0.0271 0.0598 0.550 

B23 -1.08 -0.665 -0.0984 

B24 2.06** 0.939 0.484 

B34 -0.175 0.939 -1.60* 

R2 0.740 0.775 0.721 

Adj R2 0.688 0.740 0.651 

Std Dev. 3.12 2.69 3.22 

Regression    

DF 5 4 6 

SS 693 649 642 

MS 139 162 107 

F 14.2 22.4 10.3 

Significance of F 1.25E-06 4.14E-08 1.14E-05 

Residual    

DF 25 26 24 

SS 244 188 248 

MS 9.76 7.24 10.4 

Total    

DF 30 30 30 

SS 937 837 891 

***Highly significant (P<0.01), **Significant (P<0.05), *Critical 

limit (0.05<P<0.1) 
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Table 3. Optimization criteria for different independent variables (Temperature, sucrose concentration, sodium 

chloride concentration and immersion time) and responses (ML, WR and SG) for optimum conditions 

Parameters Desired goal Lower limit Upper limit Importance Solution 

Temperature (ºC) In range 30 60 3 60 

Sucrose 

concentration (%) 

In range 30 70 3 70 

Sodium chloride 

concentration (%) 

In range 0 5 3 5 

Contact time (h) In range 1 5 3 5 

ML (%) Maximize 5.46 25 5 24.10 

WR (%) Maximize 1.65 23.2 3 21.81 

SG (%) Minimize -5.26 14.1 3 3.88 

 

 

Table 4. Prediction performance of perceptron neural network for osmotic dehydration parameters of fig fruits 

Dependent 

variables 

Error 

functions 

Number of Neurons 

1 5 10 15 20 

ML (%) RMSE 0.679 0.597 0.522 0.531 0.512 

R2 0.891 0.898 0.910 0.899 0.915 

WR (%) RMSE 0.554 0.514 0.497 0.489 0.512 

R2 0.897 0.902 0.910 0.901 0.878 

SG (%) RMSE 0.678 0.621 0.554 0.613 0.576 

R2 0.801 0.859 0.883 0.865 0.880 

 

Table 5: Comparison between RSM and ANN models 

Statistical parameters ML (%) WR (%) SG (%) 

RSM ANN RSM ANN RSM ANN 

Root mean square error 1.46 0.522 1.28 0.497 1.43 0.554 

Mean absolute percentage error 

0.181 0.138 0.231 0.165 2.69 0.584 

Correlation coefficients (R2) 

0.740 0.910 0.775 0.910 0.725 0.883 
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 چکیده 

سه  ریانج  یهاوهیم  یاسمز  گیریآب  محلول  کلر  ییتادر  و  ساکارز  غلظت  م یسد   دی آب،  مختلفهادر  زمان  ی  و  دما  ی  هامحلول، 

  و روش سطح پاسخ  ( ANNی )مصنوع   یشبکه عصب  نیب  یا  سهی مقا  کردیرو  کیقرار گرفت.    یمورد بررس  ندیمختلف فرآ  وریغوطه 

(RSM ) مستقل به طور مثبت وزن را کاهش    یرهایمتغ  ینشان داد که تمام  جیانتقال جرم انجام شد. نتا  یپارامترها   ینیبشیپ   یبرا

خشک شده به   یرهایبود. انج  یرابطه خط  نیکاهش وزن شد و ا  شیاز عوامل منجر به افزا  کیهر    شیکه افزا  یمعن  نیدادند به ا

درصد    90وزن،    شدرصد کاه  94مستقل    ریبدون اسمز داشتند. هر چهار متغ  ینسبت به نمونه ها  یبهتر  تیفیک  روش اسمزی

درصد،    70گراد، غلظت ساکارز    یدرجه سانت   60  یدما  یفرآور  نهیبه   طیدادند. شرا  شرحجامد را    شی درصد افزا  89کاهش رطوبت و  

آموزش داده شده است    یکه به درست  ANNنشان داد که مدل    جیساعت بود. نتا  5  یغوطه ور  درصد و زمان  5  م یسد  دی غلظت کلر

 . ری را انجام می دهدتقیدق ینیبشیپ   RSMبا مدل  سهیدر مقا

 

 ( انجیر  کلیدی:  خشکFicus caricaواژگان  شبکه(،  اسمزی،  کاهش   های کردن  پاسخ،  سطح  روش  مصنوعی،  عصبی 

 رطوبت، جذب ماده جامد 

 

 


