1دانشجوی دکترا، مهندسی مواد و طراحی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2دانشجوی کارشناسی ارشد، گروه آموزشی مهندسی مواد و طراحی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3دانشیار، گروه آموزشی مهندسی مواد و طراحی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
تاریخ دریافت: 16 بهمن 1392،
تاریخ بازنگری: 14 اسفند 1392،
تاریخ پذیرش: 02 آذر 1393
چکیده
خشککردن یکی از راههای افزایش زمان ماندگاری محصولات میباشد. در این مطالعه، رفتار خشک شدن کمه در شکلهای هندسی مختلف در خشککن هوای داغ براساس سه مدل ریاضی پیچ، هیلو-کلاک و هندرسون-پابیس اصلاح شده مورد بررسی قرار گرفت. آزمایشها در سه سطح دمایی 65، 75 و 85 درجه سانتیگراد در سه شکل هندسی مختلف (نمونه دایره-ای، استوانهای و تیغهای) و با دو ضخامت مختلف(1 و 3 سانتی متر) و در دو تکرار انجام گرفت. رفتار خشکشدن کمه در شکلهای هندسی مختلف براساس دادههای آزمایشگاهی مورد برازش قرار گرفت و ضریبهای مربوط به مدلها یافت شد. برای بررسی دقت مدلها از سه پارامتر ضریب تبیین(R2)، ریشه متوسط خطای دادهها(RMSE) و مجموع مربعات خطا (SSE) استفاده شد. نتایج نشان داد که با افزایش دما و ضخامت و تغییر شکل هندسی نمونهها به شکل تیغهای، ضریب نفوذ مؤثر رطوبت افزایش یافت. علاوه بر این برازش داده ها با 3 مدل مورد نظر نشان داد که مدل پیچ به علت داشتن بالاترین R2 و کمترین RMSE و SSE به عنوان بهترین مدل برای برازش دادههای آزمایشگاهی مطرح است. مدلسازی تغییرات نسبت رطوبت تیمارها با مدلهای مختلف، نشان داد که مدل پیچ (مدل 1 جدول 2) انطباق خوبی (999/0(R2= را با مقادیر نسبت رطوبت آزمایشی دارد و بهعنوان بهترین مدل پیشبینی کننده سینتیک خشکشدن لایه نازک کمه تحت شرایط مورد آزمایش انتخاب شد.
Modeling of thin-layer drying kinetics of kameh (native khashk)
نویسندگان [English]
Hadi Bagheri1؛ Mahammadmahdi Seyedabadi2؛ Mahdi Kashani nejad3
1PhD. Student, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2M. Sc. Student, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3Associate Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]
Drying is one of way to increase shelf-life of products. In present paper, the drying behavior of Kameh was evaluated in several of geometric forms of it under hot air dryer based on the three mathematical models; consist of page, HiiLaw-Cloke and Modified Henderson and Pabase. The experimental drying trials were carry out at three temperature levels of 65, 75 and 85 °C for three various geometric forms (typical circular, cylindrical and blade) and with two different thicknesses (1 and 3 cm). The experiments were performed in two replication. Given the experimental data, the drying behavior of Kameh examined and coefficient of each model were found in several of geometric forms. Accuracy of models was appraised by three parameters of R2, RMSE, and SSE. According the results, the effective moisture diffusivity was raised by increasing temperature, thickness, and changing the geometry of the samples to blade form. Moreover, the fitting of three models revealed that the page model has the best model compared to the others due to the highest R2 and the least RMSE and SSE. The Modeling changes in relative humidity treatments with different models revealed that page model (model 1, Table 2) good best fit (R2=0/99) with the relative humidity values and as the best model was selected for predicting thin-layer drying kinetics of thin kameh under experimental conditions.
کلیدواژه ها [English]
Drying, Diffusivity, Geometric form, Modeling
مراجع
[1] ramazani, H. (1365). Preparation of of khashk, (1365) Agriculture and Natural Resources Research Organization, 25, 23- 27. [in Persian].
[2] Mujumdar, A. S., and Law, C L. (2010). Drying Technology: Trends and Applicationsin Postharvest Processing. Food Bioprocess Technol, 3,843–852.
[3] Doymaz, I. (2005). Sun drying of figs: an experimental study. Journal of Food Engineering, 71: 403-407.
[4] Das, I., Das, S. K. and Bal, S., (2004). Specific energy and quality aspects of infrared (IR) dried parboiled rice. Journal of Food Engineering, 68: 249-255.
[5] Sacilik, K., Keskin, R. and Elicin, A. K. (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering 73: 231-238.
[6] Vega, A., Uribe, E., Lemus, R. and Miranda, M. (2007). Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. Food Science and Technology 40:1698-1707.
[7] Gowen, A., Abu-Ghannam, N., Frias, J. & Oliveira, J. (2006). Optimisation of dehydration and rehydration properties of cooked chickpeas (Cicer arietinum L.) undergoing microwave–hot air combination drying. Food Science and Technology, 17: 177-183.
[8] Guine, R. P. F. & Fernandes, R. M. C. (2006). Analysis of the drying kinetics of chestnut. Journal of Food Engineering, 76: 460-467.
[9] Seiiedlou, S., Ghasemzadeh, H. R., Hamdami, N., Alati, F. T. & Moghaddam, M. (2010). Convective drying of apple: mathematical modeling and determination of some quality parameters. International Journal of Agriculture and Biology, 12: 171-178.
[10] Babalis, S. J. & Belessiotis, V. G. (2004). Influence of drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, 65, 449–458.
[11] Meisami-asl, E., Rafiee, S., Keyhani, A. and Tabatabaeefar, A. (2009). Mathematical modeling of moisture content of apple slice during drying. Pakistan Journal of Nutrition 8(6): 804-809.
[12] Corzo, O., Bracho, N & Alvarez, C. (2008). Water effective diffusion coefficient of mango slices at different maturity stages during air drying. Journal of food engineering, 87, 479-484.
[13] AOAC (1990). Official method of analysis. Washington, DC: Association of Official Analytical Chemists (No. 934.06).
[14] Wong, J.Y. (2001).Theory of Ground vehicles.(3rd ed).John Wiley and Sons,Inc.
[15] Akgun, N. and Doymaz. I. (2005). Modeling of olive cake thin-layer drying process. Journal of foodengineering. 68: 455-461.
[16] Page GE. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers. [dissertation)Lafayette; Purdue University.
[17] Hii, C.L, Law, C.L. and Cloke, M. (2009). Modelling using a new thin layer drying modeland product quality of cocoa. J Food Eng, 90:191-198.
[18] Westerman, P. W., White, G. M., & Ross, I. J. (1973). Relative humidity effect on the high temperature drying of shelled corn. Transactions of the ASAE, 16, 1136–1139.
[19] Crank, J. (1975). Mathematics of diffusions (2nd ed.). London: Oxford University Press.
[20] Sun, D. W. and Woods, J. L. (1994). Low temperature moisture transfer characteristics of wheat in thin layers, Transactions of the ASAE, 37, 1919:1926.
[21] Guine, R. P. F. & Fernandes, R. M. C. (2006). Analysis of the drying kinetics of chestnut. Journal of Food Engineering, 76: 460-467.
[22] Doymaz I. (2004). Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, 61: 359-364.
[23] Mwithiga, G., and Olwal J. O. (2005). The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. Journal of Food Engineering, 71: 373-378.
[24] Akpinar, E. K. (2006). Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering, 73:75–84.